首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于重力地形改正的计算,当积分公式与数字地形(即高程网)确定之后,其计算速度和精度主要取决于被积函数的处理方法。一、问题的提出众所周知,方域地形改正的计算公式为:  相似文献   

2.
在没有精细大地水准面模型的地区开展1:5万重力调查工作时,采用布设GPS高程控制网的形式,求得高程异常改正模型,解决高程异常改正问题。布设GPS控制网时已知高程控制点要多于6个,适当地选用某种数学模型(多项式曲线拟合、多项式曲面拟合,多面函数拟合等)拟合出测区的大地水准面,然后用插值的方法再推算出其它GPS点和正常高程值,提高重力测点的高程精度。  相似文献   

3.
几种区域重力地形改正方法的讨论   总被引:1,自引:0,他引:1  
目前区域重力测量工作正在全国范围普遍开展。我国山区多,地形条件相当复杂,重力测量的地形影响不可忽略。区域重力测量的测点分布稀疏,而且通常是采用自由网,由于这些特点,其地形改正工作不能简单搬用大比例尺规则网的地形改正方法。  相似文献   

4.
“高程数据库”是“重力数据库”的一个子库,简称HSF系统,主要是为全国区域重力调查地形改正和均衡改正提供高程数据而设计的,它存放的是1/5万地形图公里网节点处的高程数据,以1/10万国际分幅为存贮单位。用户根据需要可以按1/10万的图幅号检索一个图幅内的全部高程数据,也可以按平面直角坐标和地理坐标所指定的范围检索由计算机拼接好的几幅图的数据,拼接遇到跨投影带(高斯投影6°带)时,系统能自动选用相应扩边数据或用二次加权函数法、二维拟线性插值法用相邻带的高程数据进行扩边插值。  相似文献   

5.
地形改正的方法和精度一直是重力测量外部改正的重点,矛盾的焦点又在于测地资料的精度。对目前各省相继开展的以1:20万为主的区域重力测量工作而言,最大的困难往往是缺乏足够精度的大、中比例尺(1:1万~1:2.5万)地形图。由于区域重力观测点分布稀疏和不规则性,又导致无法直接引用目前已经采用的大比例尺规则测网的电算地改方法。因此,不规则测网的地形改正方法已成为人们广为关注且急待解决的问题。  相似文献   

6.
针对我国资源三号卫星立体影像数据,利用GPS控制点,结合前视、下视、后视区域网平差精化有理函数模型,探讨了资源三号卫星立体影像数据用于重力中区地形改正的高精度DEM生成方法。通过1:1万高精度DEM数据进行地改实验验证表明:资源三号卫星立体影像数据提取的DEM可以满足1:20万区域重力测量中区地改精度要求,为我国重力测量中区地形改正提供了一条有效途径,拓展了资源三号数据在区域重力测量中的应用。  相似文献   

7.
重力地形改正的计算方法、精度指标及精度的统计方法,在现行的《重力勘探工作手册》和和《区域重力测量手册》初稿中都有明确的要求,然而手册中所述的地形改正精度的统计方法并不能反映地形图的精度对地形改正精度的影响  相似文献   

8.
区域重力测量与金属矿重力工作采取的是完全不同的野外工作方法,其精度要求也不同。本文只谈区域地形改正的问题。由于区域重力测量点分布不规则,常常缺少大、中比例尺地形图,进行区域重力测量时,怎样进行地形改正呢?  相似文献   

9.
王理 《物探与化探》1981,5(5):268-278
当前区域重力工作的普遍开展,迫切要求解决在不规则测网情况下的地形改正方法问题。  相似文献   

10.
在区域重力资料整理中,拟从1:5万地形图上读取1×1公里的高程网,建立全国地形图网结点高程数据库,用于计算区域重力远区地形改正值。但在山区能达到多大精度?这里为大家提供一份典型山区地形改正的试验资料,并据此谈些粗浅的看法,供同志们参考。  相似文献   

11.
本文讲述2000国家大地坐标系的定义及尽快采用2000国家大地坐标系的意义;介绍区域重力调查中采用GPS定点的一般方法,着重提出区域重力调查中如何采用2000国家大地坐标系进行测点远区地形改正和正常场修正的方法。此对规范和提升区域重力调查工作有一定的现实意义。  相似文献   

12.
陆地区域重力测量在全球开展已有几十年的历史,然而,迄令为止,重力异常的各项外部改正仍然存在许多问题,如自由空间改正系数的取值、中间层物质密度的选取以及地形影响值的计算方法等,本文试图就这些问题结合我国区域重力测量的情况谈一些看法,以供从事这方面工作的同志们参考。  相似文献   

13.
在大比例尺重力勘探工作中,近区、中区地形改正误差对重力总精度影响较大。在实际工作中,近区域地形改正一般采用实测或用地形图读图计算;中区地形改正一般采用地形图读图计算,《大比例尺重力勘查规范》只考虑地形图高程精度对重力总精度的影响,忽略了地形图平面坐标精度对重力总精度影响。这里从锥形、扇形基本地形改正公式推导出发,探讨不同比例尺,不同高程,平面精度对重力总精度的影响,并提出了不同地形改正精度对地形图比例尺及高程,平面精度要求建议。  相似文献   

14.
从传统的重力地形改正方法入手,用VC~( )语言编制了重力地形改正可视化程序。它能用于重力近中区地形改正,并能满足重力地改的精度要求,使得多年来重力近中区地形改正繁重的手工数图工作能够用计算机完成,且计算精度和速度得到明显提高。通过人机对话的形式(操作界面),可直接计算出近、中区的地形改正值。  相似文献   

15.
地质部为了编制1∶100万全国区域重力异常图,要求各省、市、自治区的物探队在85年以前完成本地区的区域重力测量工作。该项任务包括对旧有重力资料的收集、整理和数据处理,以及对广大空白区逐块填测,在处理新旧重力资料时都要进行地形改正值的计算,而这是一项十分繁重的工作。通常,为了计算一个重力测点的地改值需要用到其周围几百个,甚至上千个点的高程数据进行数值积分,而区域重力测量在一个省区中的重力测点是数以千计的。  相似文献   

16.
重力数据库各项外部改正的计算   总被引:2,自引:0,他引:2  
本文介绍的是在重力数据库系统中配备的一套重力各项外部改正计算的方法和程序,其中地形改正和均衡改正程序将远区改正范围划分为三个区:远一区为1或2公里至20公里,采用平面公式,高程数据网度为1公里×1公里;远二区为20公里至166.7公里,采用球面公式,高程数据网度为5′×5′;远三区为166.7公里至全球,采用球面公式旋转椭球体模型,为全球1°×1°高程数据网,各区一律用园域接口。为便于用户选择,每区备有多种方法。此外还备有高度改正,中间层改正和正常改正程序。用这个系统可以计算自由空间重力异常,布格重力异常和均衡重力异常值。  相似文献   

17.
多年来,不论重力勘探程度如何,在布格重力异常计算中都必须经过地形改正和中间层改正。本文通过分析在计算布格重力异常时地改和中间层改正对测点的重力补偿,提出了取消中间层改正以适应微重力勘探精细解释需要的地形校正方法。该方法建立在对实际地形(岩性)的正演基础上,可以根据施工地区的地质条件合理选择重力基准面进行可变密度地形校正。使用该方法可以比较好地消除地形起伏和不均匀岩性对测点产生的重力影响,从而得到比较可信的重力异常数据。  相似文献   

18.
重力地形改正值的计算,是山区重力勘探中一项非常繁重的工作。为了减轻此项劳动,我国重力工作者多年来进行了很多试验研究工作,先后编制了DJS-103、121、108机手编程序供使用。近几年来在地质部门中广泛的推广了ALGOL算法语言。但是计算重力地形改正值还没有相应的语言程序,给及时利用电子计算机处理重力资料带来了一定困难。为此,我们在认真学习了各种手编程序的优点,并在近区数学模型的选择、中区数学公式的处理及远区参数的插值方法上做了某些改进后,编写了DJS-108机和M—160Ⅱ机的计算  相似文献   

19.
航空重力地形改正是获得航空布格重力异常的重要环节,是航空重力勘探数据处理中的重点和难点问题。本文针对航空重力特点,分析了地改最大半径的选择与地形特点及计算精度的关系。为满足大数据量网格数据的计算要求,对全分辨率地形剖分方法、远近分区地形剖分方法、自适应四叉树地形剖分方法对航空重力地形改正计算的产生影响进行了对比。其中自适应四叉树地形剖分法可以对地形网格距离和高程进行综合考虑,达到最佳分辨率的地形剖分,既保证计算精度,又提高运算速度。  相似文献   

20.
消息报导     
吉林省地矿局物探大队自八十年代初以来,对吉林省及邻区的六十一万平方公里24739个数据的国家重力及航磁测量资料,采用相应的理论和方法,在M—160Ⅱ电子计算机上进行了计算处理。方法实验研究工作首先从确定计算莫霍面深度的区域重力异常开始,采用同一标准地壳厚度点,利用压缩质面法计算出相应的莫霍面深度,与已知地壳厚度进行拟合优度计算。最后选取了拟合优度较高、信息量又较丰富的60公里×60公里的富口圆滑布伽重力异常,並对松辽平原地区布伽重力异常选用无限大平板改正公式,进行了中新生代沉积层校正。以此做为计算莫霍面深度的区域重力资料。在地壳厚度与区域重力异常关系的研究中,利用东北三省的25个已知地震测深点数据控制地壳厚度,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号