首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We numerically study the bifurcations of two nonlinear maps, with the same linear part, which depend on a parameter namely the Hénon quadratic map and the so called beam-beam map. Many families of periodic orbits which bifurcate from the central family, are studied. Each family undergoes a sequence of period doubling bifurcations in the quadratic map, But the behavior of the beam-beam map is completely different. Inverse bifurcations occur in both maps. But some families of the same type which bifurcate inversely in the quadratic map do not bifurcate inversely in the beam-beam map, even though both maps have common linear part.  相似文献   

2.
The general conception of the critical inclinations and eccentricities for theN-planet problem is introduced. The connection of this conception with the existence and stability of particular solutions is established. In the restricted circular problem of three bodies the existence of the critical inclinations is proved for any values of the ratio of semiaxes . The asymptotic behaviour of the critical inclinations as 1 is investigated.
. . . 1.
  相似文献   

3.
. , , . , t>1010 ( z<105) .
In this paper we continue the work of Weymann, investigating the causes of distortion of the spectrum of the residual radiation from the Planck curve. We discuss the distortion to the spectrum, resulting from recombination of primeval plasma.We then derive an analytic expression for the distortion to the equilibrium spectrum due to Compton scattering by hot electrons. On the basis of the observational data we conclude that a period of the existence of neutral hydrogen is inescapable in the hot model of the universe. It is concluded that any injection of energy att>1010 sec (red shiftz<105) give the distortions of the equilibrium spectrum.
  相似文献   

4.
Families of three-dimensional axisymmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the vertical-critical orbits (v = 1,b v = 0) of the basic plane familiesi andI. Further the predictor-corrector procedure employed to reveal these families has been described and interesting numerical results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections.  相似文献   

5.
Formulae containing the elements of the variational matrix are obtained which determine the linear iso-energetic stability parameters of periodic orbits of the general three-body problem. This requires the numerical integration of the variational equations but produces the stability parameters with the effective accuracy of the numerical integration. The procedure is applied for the determination of horizontally critical orbits among the members of sets of vertical-critical periodic orbits of the threebody problem. These critical-critical orbits have special importance as they delimit the regions in the space of initial conditions which correspond to possibly stable three-dimensional periodic motion of low inclination.  相似文献   

6.
Résumé Il est envisagé dans ce travail un cas particulier du problème des trois corps solides. On suppose qu'un des corps est passif, c'est-à-dire qu'il n'agit pas sur les deux autres. Chaque corps posséde la symétrie axiale, ainsi que la symétrie par rapport à plan, perpendiculaire à cet axe, Au moment initial les plans de la symétrie des corps coinsident avec le plan principal des coordonneés. Alors il est possible de choisir les conditions initiales de sorte que les centres de la symétrie resterons toujours dans le plan principal, chaque corps tournant uniformement autour son axe. Nous nommerons ce problème — le problème restreint plant. Le cas le plus simple est le problème plan circulire, quand le centre d'un des corps actif décrit orbite circulaire authour d'autre corps actif. Ce problème se reduit à l'étude du mouvement du centre d'inértie du corps passif dans le plan principal —plan d'orbite circulaire du corps actif. Nous trouvons les conditions d'existence pour les solutions particulières du ce problème et posons la question de la stabilité des points de libration correspondantes. D'une manière plus détaillée nous envisageons le cas, où toutes les forces actives sont définiérs une par loi unique.
, . , , , . . , , . . , , . , , . , , . . . , , .
  相似文献   

7.
The applicability of the properties of central configurations proceeding from the many-body problem to study of gaseous sphere cloud evolution during its gravitational contraction is justified. It is shown that the product runs to a constant value in the asymptotic time limit of simultaneous collision of all the particles of the cloud where is a form-factor of the potential energy and is a form-factor of the moment of inertia.The spherical bodies as well as ellipsoids of rotation and general ellipsoids with a one-dimensional mass distribution (k),k[0, 1] are found to possess the property =const.
. , - , , ., , - =const., , (k),k[0, 1].
  相似文献   

8.
9.
10.
A limiting case of the problem of three bodies (m 0,m 1,m 2) is considered. The distance between the bodiesm 0 andm 1 is assumed to be much less than that between their barycenter and the bodym 2 so that one may use Hill's approximation for the potential of interaction between the bodiesm 1 andm 2. In the absence of resonant relations the potential, double-averaged by the mean longitudes ofm 1 andm 2, describes the secular evolution of the orbits in the first approximation of the perturbation theory.As Harrington has shown, this problem is integrable. In the present paper a qualitative investigation of the evolution of the orbits and comparison with the analogous case in the restricted problem are carried out.The set of initial data is found, for which a collision between the bodiesm 0 andm 1 takes place.The region of the parameters of the problem is determined, for which plane retrograde motion is unstable.In a special example the results of approximate analysis are compared with those of numerical integration of the exact equations of the three body problem.
m 0,m 1,m 2. , m 0 m 1. m 2, m 1 m 2 m 1 m 2 . , . . , m 0 m 1. , . .
  相似文献   

11.
12.
The gravity potential of an arbitrary bodyT is expanded in a series of spherical harmonics and rigorous evaluations of the general termV n of the expansion are obtained. It is proved thatV n decreases on the sphere envelopingT according to the power law if the body structure is smooth. For a body with analytic structure,V n decreases in geometric progression. The exactness of these evaluations is proved for bodies having irregular and analytic structures. For the terrestrial planetsV n =O (n –5/2).
I I V n IV n I . . IV n I . I. IV n =O(n –5/2 )
  相似文献   

13.
14.
15.
Since the average relation between the angular momentaP and the massesM of galaxies can be represented by a power lawPM , we can define a relative angular momentum =P/M (or a constant timeP/M ). For a random motion picture within protogalaxies, should follow a Maxwellian distribution and consequently the dispersion of log should be 0.210.For the reasonable range of ( to 2), the limited sample of galaxies with known dynamical parameters gives between and 1 times the Maxwellian value. For the plausible special case =2 the reciprocal of the maximum rotational velocityv m is already a measure of and the larger sample ofv m-values not only yields the Maxwellian but, moreover, shows the shape of the distribution.
PM , =constP/M . , (lg )=0.210. 7/42, . =2 v m- .
  相似文献   

16.
We consider the basic families of plane-symmetric simply-periodic orbits in the Sun-Jupiter case of the plane restricted three-body problem and we study their horizontal and vertical stabilities. We give the critical orbits of these families, corresponding to the vertical stability parameter = 1 and in future communications we shall give the three-dimensional families which emanate from these plane bifurcations.  相似文献   

17.
, . () . , , , . ( ), , , . . (2.7). ( 1 k 1 ,V — , — .) (k 1) (k) §2 ( (2.14)). , (3.6) (3.4), (3.8) . (3.9)–(3.13) ( (3.9), (3.10) (3.11) , (3.12)–(3.13) ). (3.14), (3.16)–(3.19). - . (3.15). ( (4.14)–(4.15)). (4.23)–(4.25). (4.26)–(4.28). §5. , . ((5.5)–(5.6)). , . (5.10) .  相似文献   

18.
Low noise photoelectric measurements of the line profile of the g = 0 Fe line gl 5576.097 combined with determinations of the wavelength shift of its centre calibrated by use of an I 2 absorption tube are reported. Measurements taken at various limb distances (1.0 cos 0.2) and along 4 different diameters of the Sun are used to investigate the behaviour of the line asymmetry (C-shape) and wavelength shift of the line centre as functions of cos and of latitude and to search for possible pole-equator differences.An accuracy of approx. 0.8 mÅ r.m.s. is achieved for the determination of the centre of the solar line relative to the iodine lines and of 0.3 mÅ to 1 mÅ r.m.s. for the relative variations of the C-shape. The analysis shows a significant difference between the limb-effect curves along polar and equatorial diameters for cos 0.4 and changes of the C-shape for 0.9 cos 0.6 with a rather strong indication of a latitude dependence of the C-shape. This latitude dependence may account for the so-called ears observed by Howard et al. (1980) who used the well-known Doppler compensator method which integrates the line asymmetry from the line wings to the core.Mitteilungen aus dem Kiepenheuer-Institut Nr. 207.  相似文献   

19.
The resonance C1 occurs when the longitude of the perigee measured from the equinox becomes a slow angle in the doubly averaged equations of motion. This resonance is one of the critical inclination family with I 46°. For prograde Earth satellite orbits, up to five critical points can be identified. Only simple pitchfork bifurcations occur for the single resonance C1. A two degrees of freedom system is studied to check how a coupling of two lunisolar resonances affects the results furnished by the analysis of an isolated resonance case. In the system with two critical angles (g+h and h,+2 , seven types of critical points have been identified. The critical points arise and change their stability through 11 bifurcations. If the initial conditions are selected close to the critical points, the system becomes chaotic as shown in Poincaré maps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号