首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
1引言PM2.5是大气中直径在2.5μm以下的颗粒物的总称,由于其粒径小,富含大量的有毒、有害物质,并且在大气中停留的时间长,输送距离远,越来越受到人们的关注。PM2.5可以穿过肺部并存留在肺的深处,对人体呼吸系统具有刺激作用、致敏作用,同时还可能作为携带细菌微生物、病毒和致癌物的载体侵人人体,严重危害人体健康。目前有研究表明,大气细粒子污染程度与产生雾霾天气有一定的相关性,是造成大气能见度下降的主要原因。  相似文献   

2.
PM2.5是指悬浮于空气中粒径小于等于2.5μm的颗粒物,由于对大气环境质量和人体健康的影响而备受关注。但是PM2.5是字母词,一直没有统一的中文名称,媒体和学界使用的名称较混乱,大多直接用“PM2.5”,也有用“细颗粒物”“可入肺颗粒物”“空气细颗粒物”等。  相似文献   

3.
空气中颗粒物的危害及其防治   总被引:1,自引:0,他引:1  
颗粒物是大气中危害最大的污染物,按粒径大小它又分为降尘、TSP(总悬浮颗粒物)、PM10(可吸入颗粒物)、粗颗粒物和细颗粒物。总悬浮颗粒物是直径小于100μm的颗粒物,按粒径大小,它可分为好多种。我们在电视上每日见到的空气质量公报中的颗粒物这一项,是以对人体健康有显著危害的PM10来计算的,因为它可以通过呼吸进入人体的上、下呼吸道,所以名为PM10。  相似文献   

4.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

5.
为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg.m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg.m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg.m-3.d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg.m-3.d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。  相似文献   

6.
利用2013-2016年惠州市5个环保国控站的PM质量浓度和国家基本气象观测站的气象要素观测数据及NCEP/NCAR日平均再分析资料,统计分析了惠州市大气颗粒物质量浓度变化特征及其与气象条件的关系。结果表明:2013-2016年惠州市大气颗粒物质量浓度、污染日数和超标日数均呈明显下降趋势,2016年PM10年平均质量浓度已接近年平均质量浓度限值一级标准,PM2.5年平均质量浓度达到年平均质量浓度限值二级标准。大气颗粒物质量浓度冬季的最高、秋季的次之,非汛期的(10月次年3月)显著高于汛期的(4-9月)。PM2.5污染日均出现在非汛期,尤其是冬季的1和12月,大多出现在晴朗干燥的东北风天气下。分析惠州市20132016年间两次长时间大气颗粒物污染过程发现,这两次大气颗粒物污染过程出现在冷空气减弱、冷高压东移出海后或下一波冷空气来临前,但随着南下冷空气的到来,北风加大或带来明显降水,空气质量明显好转。  相似文献   

7.
采用江苏省淮安市地面5个监测站2013年1月1日2015年12月31日PM10、PM2.5、SO2、NO2、CO、O3逐日质量浓度资料及同期气象资料,统计分析了该地区大气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD (Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM10、PM2.5占比分别达到25.2%、48.9%,PM10中PM2.5比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度 1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。  相似文献   

8.
城市大气气溶胶细粒子的化学成分及其来源   总被引:11,自引:0,他引:11  
于凤莲 《气象》2002,28(11):3-6
大气气溶胶细颗粒物(PM10、PM2.5)是近年来大气气溶胶研究的热点。细粒子中含有多种化学元素与化合物。细粒子中的化学成分随时空变化而变化。细粒子主要来自车辆尾气、化石、油料及生物质燃料燃烧等人为排放源和二次污染。  相似文献   

9.
2020年1月23日起,武汉地区施行了严格的交通管控措施,对当地的人为活动产生了重大影响。本文基于地面监测站网和卫星遥感分析了管控期间武汉地区的主要大气成分的变化,并研究了人为排放下降对O3和细颗粒物(PM2.5)污染的影响。研究发现,由于管控期间施行机动车禁行政策,武汉地区的NO2浓度与2019年同期相比下降53.2%,挥发性有机物(VOCs)下降了25.1%;与NO2和VOCs的显著下降不同,O3日最大8小时滑动平均第90百分位浓度平均值与去年同期相比上升16.5%,尤其是2月温度同比增高超过5°C,紫外辐射增长超过100%,O3浓度显著高于去年同期,说明应基于O3前体物NOx和VOCs 活性种类的非线性定量关系加强协同减排;同时,管控期间PM2.5浓度与去年同期相比下降了35.6%,但是PM2.5浓度低值主要集中在风速较大、扩散较好的2月,其他时段PM2.5浓度下降并不明显;值得注意的是,与2月的显著下降不同,3月硝酸盐的浓度同比变化不大,说明导致NOx转化为硝酸盐的大气氧化能力并未受到较大削减,武汉地区颗粒物减排应基于颗粒物不同组分的形成机理,加强颗粒物一次排放源和关键前体物控制。  相似文献   

10.
陈跃华  齐冰 《浙江气象》2015,(2):28-31,40
通过对淳安2013年全年的大气颗粒物PM2.5和PM10资料统计分析,得出该地区PM2.5和PM10质量浓度的季节变化、日变化特征以及气象因子对其的影响。结果表明:2013年淳安PM2.5年平均浓度为国家标准的1.2倍,PM10年平均浓度优于国家标准;PM2.5和PM10均具有明显的季节变化特征,表现为冬季秋季春季夏季;并且均呈现双峰型的日变化特征,二者出现峰值的时间基本一致,PM2.5和PM10峰值出现在18:00,次峰值出现在08:00,谷值均出现在14:00,主要与边界层变化和人为活动有关;PM2.5和PM10变化存在明显的线性关系。降水对颗粒物浓度影响较大,能有效降低颗粒物质量浓度。  相似文献   

11.
敦煌莫高窟大气颗粒物中水溶性离子变化及来源解析   总被引:1,自引:0,他引:1  
为探明莫高窟大气颗粒物污染特征,采集了2014年4-12月第16窟及72窟外环境中大气颗粒物PM2.5和PM10~2.5样品,对比分析了样品中水溶性离子变化及影响因素,通过主成分分析法解析了其主要来源.结果表明:(1)窟区主风向为南风,起沙风频率仅为0.01%,不利于污染物的扩散;(2)窟外PM2.5和PM10~2.5...  相似文献   

12.
利用北京市空气质量监测数据和气象资料,对2013年2月28日和3月9日两次沙尘污染过程PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)、PM10(空气动力学当量直径小于等于10μm的颗粒物,即可吸入颗粒物)浓度及PM2.5浓度/PM10浓度比值的变化特征进行了分析,研究结果表明:(1)沙尘开始影响北京时,PM2.5与PM10浓度表现出反位相变化,PM10浓度在两次沙尘过程中2 h内分别上升50.8%与202.4%,最高达800μg m-3以上;PM2.5浓度分别下降58.3%与50.9%,直至下降至35μg m-3以下,PM2.5有明显改善现象。(2)虽然PM2.5浓度在沙尘到达前有缓升的迹象,但沙尘抵达后,PM2.5浓度持续快速下降,PM2.5浓度/PM10浓度比值由沙尘影响前的0.75以上降至0.25以下。沙尘影响前,PM2.5日均值均超过150μg m-3,北京地区处于重度污染水平。这说明沙尘来临前以人为污染为主,主要由细粒子"贡献",沙尘来临后的空气污染,主要由巨、大粒子的沙尘"贡献"。  相似文献   

13.
南宁市PM10浓度与气象条件分析   总被引:4,自引:2,他引:2  
利用南宁大气成分观测系统建成以来收集的数据,分析南宁市大气成分中可吸入颗粒物(PM10)的浓度变化及其与各种气象条件的相关性。分析结果表明,南宁PM10浓度与降水量、温度、风速等要素稳定为反相关,但与湿度存在一个分界线。  相似文献   

14.
武汉作为中部地区高湿度代表城市,大气污染严重,霾天气多发,但有关该地区大气能见度与PM2.5浓度及相对湿度(RH)的定量关系尚不明确。利用2014年9月—2015年3月武汉地区逐时能见度、相对湿度及颗粒物质量浓度观测数据,研究分析了武汉大气能见度与PM2.5浓度及相对湿度的关系,并进行能见度非线性预报初探,得到以下结论:武汉霾时数发生比例高,霾的发生和加重是能见度降低的主要原因;能见度降低伴随大量细粒子产生和累积,这是武汉大气能见度恶化的重要诱因。细颗粒物浓度与相对湿度共同影响和制约大气能见度变化,高湿高浓度时能见度显著下降,湿情景下(RH≥40%),能见度恶化主要是由湿度增高诱使细颗粒物粒径吸湿增长导致其散射效率增大造成的。当RH >90%时,能见度随湿度升高成线性递减,相对湿度每升高1%,武汉平均能见度降低0.568 km。而干情景下(RH2.5质量浓度升高。在城市大气细粒子污染背景下,能见度与相对湿度成非线性关系,这主要与PM2.5对能见度的影响及吸湿性颗粒物的散射效率变化有关。PM2.5浓度与能见度成幂函数非线性关系,80%≤RH2.5浓度对能见度的影响敏感阈值是随着湿度升高而减小的,干情景下能见度10 km对应的PM2.5浓度阈值为70 μg/m3,湿情景下该阈值为18—55 μg/m3。当PM2.5质量浓度低于约40 μg/m3时,继续降低PM2.5可显著提高武汉大气能见度。预报试验表明,基于神经网络方法建立大气能见度非线性预报模型是可行的,预报能见度相关系数为0.86,均方根误差为1.9 km,能见度≤10 km的TS评分为0.92。网络模型具有较高预报性能,对霾的判别有较高准确性,为衔接区域环境气象数值预报模式,建立大气能见度精细化动力统计模型提供参考依据。   相似文献   

15.
针对受体模型对大气PM2.5中二次无机、有机气溶胶不能给出有效源贡献的问题,建立了一种基于污染源清单的化学质量平衡(Inventory-Chemical Mass Balance,I-CMB)颗粒物源解析受体模型,代入北京市近年的污染物排放数据进行了解析应用。结果表明,燃煤是北京大气PM2.5的最大来源(占比约28.06%),其余依次为机动车(19.73%)、扬尘(17.88%)、工业(16.50%)、餐饮(3.43%)、植物(3.40%)。相比于传统的化学质量平衡法(Chemical Mass Balance,CMB),I-CMB的源解析过程对源成分谱的要求较低、抗干扰性更强,计算结果均衡、详尽,比较适合我国当前大气PM2.5控制的需求。  相似文献   

16.
针对京津冀地区主要大气污染物NOx(氮氧化物)和PM2.5(大气中粒径小于或等于2.5μm的颗粒物),应用柴油车尾气净化技术及中小锅炉烟气脱硝技术,并根据2015年和2030年我国能源规划,设计3种技术应用情景,采用WRF-CAMx耦合模式,对京津冀地区大气中NOx和PM2.5进行了应用情景模拟。结果表明,单独应用柴油车尾气净化技术后(方案1),北京、天津地区大气中的NOx浓度降低幅度达20%,河北地区降低5%;PM2.5的浓度降低幅度约10%;应用柴油车尾气净化技术和2015年能源规划情景(方案2),京津冀地区大气中NOx和PM2.5浓度的降低幅度均超过20%;应用柴油车尾气净化技术和2030年能源规划情景(方案3),该地区NOx浓度降低幅度与之相当,PM2.5浓度降低幅度超过30%。可见脱硝技术和清洁能源利用的有效性依赖于其应用比例。二次气粒转化的化学过程形成的硝酸盐、硫酸盐和铵盐对该地区空气中PM2.5浓度的贡献很大,冬、春、秋季硝酸盐最大贡献高达60%,夏、秋季硫酸盐最大贡献超过70%,铵盐四季最大贡献约25%。这说明PM2.5的主要前体物NOx、SO2、NH3、VOCs (Volatile Organic Compounds)、CO等均大幅度削减才能有效降低该地区空气中PM2.5浓度。  相似文献   

17.
利用GRIMM180气溶胶粒谱分析仪采集乌鲁木齐市PM10、PM2.5和PM1.0数据,研究表明:乌鲁木齐市气溶胶颗粒物质量浓度在进入采暖季后急剧增加,冬季颗粒物中细粒子含量最高,PM2.5/PM10可达77.6%,PM2.5/PM10,PM1.0/PM10,PM1.0/PM2.5三比值体现了颗粒物的分布特征,四季污染程度越高,细粒子含量越高。四季无降水日PM10、PM2.5、PM1.0的质量浓度和分布的日变化基本呈三峰三谷型,出现早—午—晚峰值,上午—下午—午夜后谷值,各季节峰谷值具体出现时间略有差别,由于冬季逆温层顶盖等因素的影响,冬季质量浓度和分布的日变化在此基础上多了两次波动。降水的发生对冬、春季质量浓度的影响大于夏、秋季,对不同粒径段粒子的分布影响有一定差别。  相似文献   

18.
邢军  孙颖  李德恒 《吉林气象》2012,(1):8-11,26
利用四平中韩沙尘暴监测站颗粒物监测仪器GRIMM180观测的2011年数浓度及ρ(PM10)、ρ(PM2.5)和ρ(PM1.0)数据及台站的常规气象观测资料,分析了该地区数浓度、质量浓度的变化特征及与气象条件的相关性。结果表明,PM2.5和PM10污染存在着明显的季节性变化,季节变化特征基本一致,表现为冬季>春季>秋季>夏季,冬季最重,夏季最轻;颗粒物质量浓度日变化呈现两峰特征,ρ(PM10)、ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)的平均值为65.7%,ρ(PM1.0)/ρ(PM2.5)的平均值83.9%,ρ(PM1.0)/ρ(PM10)的平均值55.2%;四平地区年主导风向为SSW,颗粒物质量浓度变化受沙尘移动路径影响较大,采暖期间供热燃煤排放对空气质量有较大程度的影响,其中大风、浮尘等天气条件下颗粒物质量浓度值呈较大突变特性。  相似文献   

19.
长春市气溶胶质量浓度变化特征浅析   总被引:1,自引:0,他引:1  
1引言大气气溶胶是指大气中悬浮的固体或液体粒子。气溶胶质量浓度是单位体积大气中所含气溶胶的质量,单位为mg/m^3。其中PMl0(粒径小于等于10μm)和PM2.5(粒径小于等于2.5μm)的质量浓度是衡量空气质量的重要指标。  相似文献   

20.
对济南市2013年1—12月的能见度、相对湿度、PM10及PM2.5逐时监测数据分析,结果表明:能见度、相对湿度、PM10和PM2.5浓度有明显的月变化和日变化规律。在各项污染物中,能见度与颗粒物的相关性最高,与PM10的相关系数为-0.6718,与PM2.5的相关系数为-0.7422;在气象因子中,与相对湿度的相关性最高,相关系数为-0.6501。不同季节条件下,能见度与PM2.5的相关性明显优于PM10的,冬季能见度与颗粒物的相关性明显优于其他季节的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号