首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
This study focuses on the development of a next generation multiobjective evolutionary algorithm (MOEA) that can learn and exploit complex interdependencies and/or correlations between decision variables in monitoring design applications to provide more robust performance for large problems (defined in terms of both the number of objectives and decision variables). The proposed MOEA is termed the epsilon-dominance hierarchical Bayesian optimization algorithm (εε-hBOA), which is representative of a new class of probabilistic model building evolutionary algorithms. The εε-hBOA has been tested relative to a top-performing traditional MOEA, the epsilon-dominance nondominated sorted genetic algorithm II (εε-NSGAII) for solving a four-objective LTM design problem. A comprehensive performance assessment of the εε-NSGAII and various configurations of the εε-hBOA have been performed for both a 25 well LTM design test case (representing a relatively small problem with over 33 million possible designs), and a 58 point LTM design test case (with over 2.88×10172.88×1017 possible designs). The results from this comparison indicate that the model building capability of the εε-hBOA greatly enhances its performance relative to the εε-NSGAII, especially for large monitoring design problems. This work also indicates that decision variable interdependencies appear to have a significant impact on the overall mathematical difficulty of the monitoring network design problem.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号