共查询到20条相似文献,搜索用时 62 毫秒
1.
边长变化反演应变参数的总体最小二乘方法 总被引:5,自引:0,他引:5
根据总体最小二乘原则,推导了同时顾及边长变化及测线方位角量测误差的应变参数反演的总体最小二乘方法,并给出了精度评定公式。实际算例计算结果分析表明,应用总体最小二乘方法可以得到更合理的应变参数反演结果,特别是参数精度评定方面;对于系数矩阵中含有常数列时,必须将该常数列取出,否则得到的解是错误的。 相似文献
2.
利用总体最小二乘方法和1998—2004年的GPS水平速度场观测数据研究川滇地区地壳应变率参数的反演,同时考虑观测值(速度)和系数矩阵(监测点坐标)的误差;比较分析总体最小二乘与最小二乘反演结果,证实总体最小二乘方法反演川滇地区地壳应变参数的合理性。 相似文献
3.
4.
在处理坐标转换数据的方法中,通常使用的方法是最小二乘法,但其由于不能顾及系数矩阵误差而具有一定的局限性,导致坐标转换结果的可靠性较差。因此,需要一种新的方法来弥补最小二乘法的不足。本文引入总体最小二乘法和混合最小二乘法,采用仿真数据求解坐标转换七参数,并将结果与其仿真值进行比较,证明采用混合最小二乘法得到的坐标转换七参数更接近于理论值。 相似文献
5.
在测量数据处理中,最为经典的处理方法是最小二乘法,认为误差只是包含在观测向量当中,系数矩阵中不包含误差。实际上由于模型等因素,系数矩阵中经常存在着误差。为了平差的严密性和精确性,采用一种可以同时顾及观测向量误差和系数矩阵误差的总体最小二乘方法,应用于测量数据处理和坐标转换中,得到更符合实际的平差处理,获得更准确的坐标转换参数。 相似文献
6.
加权总体最小二乘没有考虑观测数据中可能存在的粗差,本文基于IGG权函数,采用选权迭代法求解加权总体最小二乘。结合模拟数据和真实数据,系统地比较了加权总体最小二乘方法、基于Huber权函数的稳健加权总体最小二乘方法和基于IGG权函数的稳健加权总体最小二乘方法的系数估计和误差估计,通过对比分析表明,两种稳健加权总体最小二乘方法的参数估计结果比加权总体最小二乘方法更加可靠,且以基于IGG权函数的稳健加权总体最小二乘方法为最优。 相似文献
7.
在复数域最小二乘的基础上提出了复数域总体最小二乘平差方法,推导了复数域总体最小二乘和复数混合总体最小二乘的相关公式。通过算例比较分析了复数观测值的残差的模的平方和最小(平差准则1)下及残差的实部和虚部的平方和分别最小(平差准则2)下的复数最小二乘、复数观测值和系数矩阵的残差的模的平方和最小(平差准则3)下及残差的实部和虚部的平方和分别最小(平差准则4)下的复数总体最小二乘方法的优劣。试验结果表明:平差准则1下复数最小二乘较平差准则2下得到的结果更加合理,平差准则3下复数总体最小二乘较平差准则4下得到的结果更为准确;当顾及系数矩阵误差时,平差准则3下复数总体最小二乘要优于平差准则1下复数最小二乘。 相似文献
8.
总体最小二乘估计方法顾及系数矩阵和观测向量误差,具有最小二乘估计方法无法对系数矩阵进行改正的独特优势,在数据处理中具有广泛的应用.基于此,对目前总体最小二乘估计中的参数求解方法和精度提升方法进行了阐述,之后采用路基沉降工程实例,对最小二乘和总体最小二乘预测精度进行比较分析.实验结果表明,总体最小二乘算法的精度更高. 相似文献
9.
目的 混合总体最小二乘(mixed LS-TLS)合理地顾及了系数矩阵和观测向量误差,却没有考虑数据中可能存在的粗差。利用IGGII方案,提出一种稳健的混合总体最小二乘方法,并通过平面拟合进行验证。结合模拟数据和真实数据,通过与最小二乘(LS)、总体最小二乘(TLS)和混合总体最小二乘的对比分析,证实这种稳健混合总体最小二乘的平面拟合结果最为可靠。 相似文献
10.
同震滑动分布参数与地表形变间的线性关系依赖于格林函数矩阵的构造,格林函数矩阵元素与破裂面位置、几何参数、破裂方式及位错模型假设等因素有关。本文尝试考虑格林函数矩阵元素的误差来补偿上述原因在一定程度上对反演参数的影响,采用同时顾及系数矩阵(格林函数矩阵)和观测向量两者误差的总体最小二乘方法反演同震滑动分布。首先确定了系数矩阵元素和观测向量的协因数矩阵,考虑到格林函数矩阵的病态性(秩亏),借助拉普拉斯二阶平滑得到正则化矩阵,采用总体最小二乘正则化法反演同震滑动分布。并对2009年意大利中部拉奎拉(L’Aquila)Mw6.3级地震实例进行同震滑动分布反演研究。结果表明,拉奎拉地震的走向为144.37°,倾角为59.06°,滑动分布的最大滑动量为0.95m,平均滑动角为-96.4°,主要滑动深度为4~15km的范围,地震矩为3.63×10~(18)N·m,对应的矩震级为Mw6.34。总体最小二乘与最小二乘法的滑动分布解存在一定差别,但差别的量级在10-4以内。 相似文献
11.
对比总体最小二乘方法与最小二乘方法在相机标定中的适用性及优越性。在相机标定中,由于像点坐标和对应的地面点坐标均存在误差,因此采用总体最小二乘方法对误差方程中的系数矩阵及观测向量同时改正,能够建立更加合理的计算模型。文中以相机标定两步法为例,通过实例解算,证明利用总体最小二乘法能够得到精度更高的相机标定参数解。 相似文献
12.
13.
14.
15.
16.
总体最小二乘方法在空间后方交会中的应用 总被引:10,自引:0,他引:10
在空间后方交会的解算过程中,利用共线条件方程式列出误差方程后,针对地面控制点以及像点坐标均存在误差这一特点,引入总体最小二乘(total least squares,TLS)的方法,对系数矩阵A以及观测向量b同时进行改正,计算像片的6个外方位元素,建立更加合理的计算模型,可获得精度更高、更稳定的解。 相似文献
17.
机载激光雷达点云数据滤波技术是LiDAR数据后处理最关键的内容之一。利用最小二乘平差的曲面拟合滤波算法存在一定不足,基于混合最小二乘和总体最小二乘的算法可以有效弥补不足。本文提出一种基于混合最小二乘和总体最小二乘的曲面拟合滤波算法。实验表明,本文滤波算法效果良好,满足实际应用需求。 相似文献
18.
总体最小二乘是近年来发展起来的较最小二乘方法更为严密的平差方法,总体最小二乘能够顾及系数矩阵和观测值矩阵同时存在偶然误差并加以改正。然而对于总体最小二乘方法的适用性以及在根据实际数据建立模型时总体最小二乘方法改正系数矩阵和观测值矩阵误差的能力问题还没有深入研究,针对一元线性回归模型,讨论总体最小二乘方法的灵敏性,利用仿真实验数据验证总体最小二乘方法在线性回归模型中的改正能力和优越性。 相似文献
19.
在直线拟合问题中,经典的最小二乘拟合方法在自变量选取不同时,拟合的参数值和中误差存在较大差别,故本文利用模拟数据对经典最小二乘和总体最小二乘拟合结果进行对比分析,得出结论认为:经典最小二乘自变量选取不同结算参数的原因是在进行拟合计算时忽略了自变量的误差,使拟合结果只能在一个方向上保持最佳;利用总体最小二乘参数拟合的方法进行直线拟合时拟合结果不受自变量变化的影响,并能够提高拟合精度。 相似文献
20.
加权总体最小二乘法是理论上估计EIV模型参数相对严密的方法,其迭代过程中涉及的矩阵运算较为耗时,在处理大量级数据时尤其明显。PEIV模型有助于提高加权总体最小二乘法的计算效率。本文基于PEIV模型和经典最小二乘准则给出了一种加权总体最小二乘法算法,算法的推导过程简洁,易于理解,迭代过程中无需重构矩阵,减少了矩阵运算量。最后通过仿真试验验证了算法的可靠性。试验结果表明,本文算法可以取得与现有算法相同的参数估计精度且计算效率更高。 相似文献