首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Rain and throughfall drops were sampled during rain events in a New Zealand beech forest and the frequency distributions of drop mass and kinetic energy calculated. The kinetic energy of throughfall under the canopy was always greater than that of rainfall in the open, notwithstanding interception losses. During a typical rain event in which 51 mm fell in 36 h, the total kinetic energy of throughfail was 1.5 times greater than that of rainfall, and the mean amount of sand splashed from sample cups was 3.1 times greater under the canopy than in the open. It appears that where mineral soil is exposed at the surface, by animal trampling or burrowing for example, rates of soil detachment by splash under a forest canopy will probably exceed those in the open.  相似文献   

3.
采用动力理论对地基-结构非线性相互作用体系的振动方程进行了定性分析.基于多线性随动强化模型,采用非线性有限元法求解了基础和地基土之间的水平刚度与摇摆刚度,建立了结构-地基非线性相互作用体系的力学模型.利用拉格朗日能量法推导了结构水平位移和扭转相耦合的振动方程.采用多尺度法研究了结构-地基相互作用体系的主共振.通过分析不...  相似文献   

4.
IntroductionWith the most feasible and powerful technical support provided by the high-precision GPS measurement for the study on horizontal crustal deformation, the obtainment of various-scale horizontal movement data and its study over the whole world is now in the ascendant, and its applicable fields is now expanding successively. In China, besides the GPS monitoring networks for different applications arranged by many agencies and departments, the key scientific project Crustal Movement…  相似文献   

5.
Based on the high-accuracy data obtained from the GPS measurements carried out in 1992, 1995 and 1996, the isochronous active units with different kinematic property inside the North China area have been distinguished, 4 active units and 1 transition zone with distinct differential movement have been determined. They are Ordos-Yinshan unit, Yanshan unit, Shanxi-Hebei-Shandong (Jin-Ji-Lu) unit, Jiaodong-Liaoning-Shandong (Jiao-Liao-Lu) unit and Yanshan-Hebei (Yan-Ji) transition zone. The relative movements among the neighboring units in this period have been given. 1 The compressive movement between Ordos-Yinshan unit and Yanshan unit is not obvious with an amount of 0.4±1.3 mm/a. 2 Jin-Ji-Lu unit moves E40°S off the Ordos-Yinshan unit and the magnitude is 4.4±1.0 mm/a. 3 Relative to the Yan-Ji transition zone of differential movement, Yanshan unit shifts W38°N with a value of 2.4±1.3 mm/a and Jin-Ji-Lu unit moves eastward 35° by south with an amount of 2.3±0.9 mm/a. 4 Jin-Ji-Lu unit has a tensional left-lateral movement of 4.7±1.4 mm/a in the direction of E37°S relative to Yanshan unit. 5 Some area near Tanlu belt which is located in the southern part of Jin-Ji-Lu block has a southward movement 14° by west with a magnitude of 1.5±1.1 mm/a off the Jin-Ji-Lu unit. 6 Relative to Jin-Ji-Lu unit, Jiao-Liao-Lu unit has a trend of clockwise movement with a tensional right-lateral motion at the north end which neighbors Yanshan unit and a compressive motion at the south end. It should be noted that the errors given in the paper are obtained based on the divergence among the displacements of the sites in the unit, rather than the value calculated from the displacement error of the sites. The analyzed results indicate that: 1 Shanxi tectonic zone and Yan-Ji transition zone are the major tectonic active zones to show the frame and magnitude of interior relative movement in North China area, and others are the secondary tectonic active zones; 2 The complete horizontal deformation in the North China area is not homogeneous nor successive; 3 The kinetic model of North China area might be "mantle dragging plus boundary coupling". Foundation item: The National Key Basic Research Project Mechanism and Prediction of Continental Earthquakes (G1998040700).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号