首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A computer model has been used to estimate soil loss and sediment yield from irregular field-size units of small watersheds. Input to the model includes spring data (i.e. relating to February through May) for the independent variables of the Universal Soil Loss Equation, and for factors such as surface roughness, an index of overland runoff, and proximity to the stream. Output from the model includes maps of seasonal estimates of potential soil losses, field sediment delivery ratios, and expected sediment yields. On the basis of selected erosion and sediment yield tolerances, the output information has been analysed to identify watershed areas which (1) exhibit both erosion and sediment yield problems; (2) exhibit only erosion problems; (3) exhibit only sediment yield problems; and (4) exhibit neither erosion nor sediment yield problems. The percentage of the watershed area in each category and the percentage of the watershed soil loss and sediment loads contributed by each category are also identified. Application of the procedure for planning remedial control programs for five watersheds is discussed.  相似文献   

2.
Land use and land cover (LULC) changes strongly affect local hydrology and sediment yields.The current study focused on a basin in the Brazilian Amazon and had the following three objectives:(1) to perform an effective diagnosis of flow and sediment yield,(2) to evaluate the impacts of LULC changes over the last 40 years on the hydro-sedimentological variables,and (3) to investigate the impacts of the possible trends or breaking points in the flow,surface runoff,and sediment yield series.The Soi...  相似文献   

3.
A new method is presented for predicting sediment sorting associated with soil erosion by raindrop impact for non-equilibrium conditions. The form of soil erosion considered is that which results from raindrop impact in the presence of shallow overland flow itself where the flow is not capable of eroding sediment. The method specifically considers early time runoff and erosion when sediment leaving an eroding area is generally finer and thus may have a higher potential for transport of sorbed pollutants. The new mechanism described is the formation of a deposited layer on the soil surface, which is shown to lead to sediment sorting during an erosion event. The deposited layer is taken to have two roles in this process: to temporarily store sediment on the surface between successive trajectories, and to shield the underlying soil from erosive stresses. Equations describing the dynamics of the suspended sediment mixture and the deposited layer are developed. By integrating these equations over the length of eroding land element and over the duration of the erosion event, an event-based solution is proposed which predicts total sediment sorting over the event. This solution is shown to be consistent with experimentally observed trends in enrichment of fine sediment. Predictions using this approach are found to only partly explain measured enrichment for sets of experimental data for two quite different soils, but to be in poor agreement for an aridsol of dispersive character. It is concluded that the formation of the deposited layer is a significant mechanism in the enrichment of fine sediment and associated sorbed pollutants, but that processes in the dispersive soil are not as well described by the theory presented.  相似文献   

4.
Processes of soil erosion and sediment transport are strongly influenced by land use changes so the modelling of land use changes is important with respect to the simulation of soil degradation and its on‐site and off‐site consequences. The reliability of simulation results from erosion models is circumscribed by considerable spatial variation in many parameters. However, most of the currently widely used erosion models at the mesoscale are semidistributed, which leads to difficulties in incorporating a high degree of spatial information, especially land use information, so that the effects of land use changes on soil erosion have hitherto not been investigated in detail using these models. In this article, a grid‐based distributed erosion and sediment transport model is introduced, which simulates the spatial pattern of erosion and deposition rates and sediment transport processes in river channels. In this model, land use affects soil erosion through altering soil loss and influencing sediment delivery. Simulated soil erosion for events recorded in 1989 and 1996 in the Lushi basin in China was analyzed by comparing it with historical land use maps. The results indicated that even relatively minor land use changes had a significant effect on regional soil erosion rates and sediment transport to rivers. The average erosion rate increased from 1989 to 1996, after the transformation of forest to farmland. The results of the study suggest that the proposed soil erosion model can be applied in similar river basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Sediments produced from eroding cultivated land can cause on‐site and off‐site effects that cause considerable economic and social impacts. Despite the importance of soil conservation practices (SCP) for the control of soil erosion and improvements in soil hydrological functions, limited information is available regarding the effects of SCP on sediment yield (SY) at the catchment scale. This study aimed to investigate the long‐term relationships between SY and land use, soil management, and rainfall in a small catchment. To determine the effects of anthropogenic and climatic factors on SY, rainfall, streamflow, and suspended sediment concentration were monitored at 10‐min intervals for 14 years (2002–2016), and the land use and soil management changes were surveyed annually. Using a statistical procedure to separate the SY effects of climate, land use, and soil management, we observed pronounced temporal effects of land use and soil management changes on SY. During the first 2 years (2002–2004), the land was predominantly cultivated with tobacco under a traditional tillage system (no cover crops and ploughed soil) using animal traction. In that period, the SY reached approximately 400 t·km?2·year?1. From 2005 to 2009, a soil conservation programme introduced conservation tillage and winter cover crops in the catchment area, which lowered the SY to 50 t·km?2·year?1. In the final period (2010–2016), the SCP were partially abandoned by farmers, and reforested areas increased, resulting in an SY of 150 t·km?2·year?1. This study also discusses the factors associated with the failure to continue using SCP, including structural support and farmer attitudes.  相似文献   

7.
Soil erosion in catchment areas reduces soil productivity and causes a loss of reservoir capacity. Several parametric models have been developed to predict soil erosion at drainage basins, hill slopes and field levels. The well-known Universal Soil Loss Equation (USLE) represents a standardized approach. Miyun reservoir, which sits on Chaobaihe River, is the main surface source of drinking water for Beijing, the capital of China. Water and soil loss are the main reasons for sediment to enter a reservoir. Sediment yield is assessed using a version of the universal soil loss equation modified by Chinese researchers. All year 2001 and 2002 data for factors in the equation are obtained from remote sensing or collected to form an analysis database. These factors are computed and mapped using Geographic Information System tools. Based on the complex database, the modified model is developed. Through pixel-based computing the sediment yield per hydrological unit is calculated. The model does not consider sediment deposition occurring on hillslopes. Gross soil loss is often higher than the sum of those measured at catchment outlets. The sediment delivery ratio (SDR) per hydrological unit is also computed. This study analyzes the main contributions of sediment yields on sub-basins of the Chaobaihe River to the Miyun Reservoir, and discusses the possible reasons for the difference between SDRs in 2001 and 2002 at different outlets. The result shows that in the upper basin of the Miyun Reservoir, in 2001 the area of erosion that could be neglected was 8,202.76 km^2, the area of low erosion 3,269.59 km^2, the area of moderate erosion 3,400.97 km^2, the area of high erosion 436.89 km^2, the area of strong erosion 52.19 km^2 and the area of severe erosion 3.13 km^2. The highest soil loss was 70,353 t/km^2. yr in Fengning County in 2001, followed by 64,418 t/km^2. yr by Chicheng County in 2001. The SDR in 2002 was lower than that in 2001. The main reasons are the decreasing rainfall erosivity and total runoff.  相似文献   

8.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

9.
This paper investigates temporal variations in fluxes of peat and other sediment in the catchment of March Haigh Reservoir, West Yorkshire. Long‐term estimates of sediment yield were derived from a study of reservoir sediments. Magnetic properties were used to correlate ten cores to a master profile dated using 210Pb and 137Cs. A 14C date suggests that most of the organic component of the sediment is allochthonous and derived from peat eroded from the catchment. Organic sediment yields suggest low catchment erosion rates between 1838 and 1963. Blanket peat erosion increased significantly after 1963, and peaked between 1976 and 1984. Estimates of total sediment yield range between 2 and 28 t km?2 a?1. These yields are significantly lower than those from some previous studies examining reservoir sedimentation in other blanket peat‐covered catchments. The low yield estimates may be due to relatively low rates of erosion in the basin, but may also be partly explained by maintenance of silt traps during the early life of the reservoir and removal of sediment by scouring. Sedimentation within the reservoir is spatially variable, and bathymetry and sediment source appear to be the dominant controls on sedimentation patterns within the reservoir. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This study was conducted to classify water erosion risk for a deciduous forest and to predict the amount of sediment yield from forest road network. GIS in combination with AHP was used for determining the soil erosion risk degrees of forest. Beside, sediment yield from forest roads with gravel and asphalted surfacing was estimated using SEDMODL. Rainfall simulator was used in calibration and validation process of model. Results showed that 47.9% of forest soil is classified from moderate to very high vulnerability. 32.3% of roads were located in soil erosion risk class of very high. This class is generally found in the eastern region of forest, while areas with very low risk are found in the south western part. 14.6% of the forest roads were ranked as having very low sediment yield. Only 61 segments out of 339 segments of forest road network delivered sediment to the ravine network. The estimated annual sediment yield for all of road sections by SEDMODL and rainfall simulator were 10,935.45 and 10,509.29 g m-2, respectively. Results of the calibration and validation process showed that the variation accounted for in the predicted values by SEDMODL with the observed values under rainfall simulation was 3.90%. Best management practices (BMP) must be considered for the areas with high degrees of erosion risk.  相似文献   

11.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

13.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Reliable assessment of the spatial distribution of soil erosion is important for making land management decisions, but it has not been thoroughly evaluated in karst geo‐environments. The objective of this study was to modify a physically based, spatially distributed erosion model, the revised Morgan, Morgan and Finney (RMMF) model, to estimate the superficial (as opposed to subsurface creep) soil erosion rates and their spatial patterns in a 1022 ha karst catchment in northwest Guangxi, China. Model parameters were calculated using local data in a raster geographic information system (GIS) framework. The cumulative runoff on each grid cell, as an input to the RMMF model for erosion computations, was computed using a combined flow algorithm that allowed for flow into multiple cells with a transfer grid considering infiltration and runoff seepage to the subsurface. The predicted spatial distributions of soil erosion rates were analyzed relative to land uses and slope zones. Results showed that the simulated effective runoff and annual soil erosion rates of hillslopes agreed well with the field observations and previous quantified redistribution rates with caesium‐137 (137Cs). The estimated average effective runoff and annual erosion rate on hillslopes of the study catchment were 18 mm and 0.27 Mg ha?1 yr?1 during 2006–2007. Human disturbances played an important role in accelerating soil erosion rates with the average values ranged from 0.1 to 3.02 Mg ha?1 yr?1 for different land uses. The study indicated that the modified model was effective to predict superficial soil erosion rates in karst regions and the spatial distribution results could provide useful information for developing local soil and water conservation plans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Effects of the grain-for-green program on soil erosion in China   总被引:1,自引:0,他引:1  
Severe soil erosion is a serious environmental problem in China.In 1999 the Chinese government implemented the Grain-for-Green Program (herein referred to as the Program),a well rounded program of ecol...  相似文献   

16.
Water is a major limiting factor in arid and semi‐arid agriculture. In the Sahelian zone of Africa, it is not always the limited amount of annual rainfall that constrains crop production, but rather the proportion of rainfall that enters the root zone and becomes plant‐available soil moisture. Maximizing the rain‐use efficiency and therefore limiting overland flow is an important issue for farmers. The objectives of this research were to model the processes of infiltration, runoff and subsequent erosion in a Sahelian environment and to study the spatial distribution of overland flow and soil erosion. The wide variety of existing water erosion models are not developed for the Sahel and so do not include the unique Sahelian processes. The topography of the Sahelian agricultural lands in northern Burkina Faso is such that field slopes are generally low (0–5°) and overland flow mostly occurs in the form of sheet flow, which may transport large amounts of fine, nutrient‐rich particles despite its low sediment transport capacity. Furthermore, pool formation in a field limits overland flow and causes resettlement of sediment resulting in the development of a surface crust. The EUROSEM model was rewritten in the dynamic modelling code of PCRaster and extended to account for the pool formation and crust development. The modelling results were calibrated with field data from the 2001 rainy season in the Katacheri catchment in northern Burkina Faso. It is concluded that the modified version of EUROSEM for the Sahel is a fully dynamic erosion model, able to simulate infiltration, runoff routing, pool formation, sediment transport, and erosion and deposition by inter‐rill processes over the land surface in individual storms at the scale of both runoff plots and fields. A good agreement is obtained between simulated and measured amounts of runoff and sediment discharge. Incorporating crust development during the event may enhance model performance, since the process has a large influence on infiltration capacity and sediment detachment in the Sahel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Intensive agricultural practices on sensitive soils induce high erosion rates in central Belgium. Expert-rules models quantify runoff and erosion at catchment scale, avoiding over-parameterization, and can include some direct or indirect connectivity features. The aim of this article is to test the ability of an expert-based model, LandSoil, to quantify runoff and to locate erosion and sedimentation areas in a small cultivated loamy catchment in Belgium during the years 2014, 2015 and 2016. Spatialized data are important for assessing model outputs and the erosive response. Measurements of runoff and observation of spatial erosion/deposition patterns, especially around major connectivity points, permitted an assessment of the reliability of the model results. Runoff modelling gave contrasting results (good linear adjustment at the outlet of the 83 ha sub-catchment (point 1): r2 of 0.96, Nash–Sutcliffe criterion of 0.95; less good at the outlet of the 3.9 ha sub-catchment (point 2): r2 of 0.28, Nash–Sutcliffe criterion of –0.47). For point 2 the poor results are explained by the very few runoff events observed, a scaling effect and the small area with a single land use. Graduated rulers demonstrate that the model is able to provide a coherent pattern of erosion/deposition. The study highlights great sensitivity to the effect of land use, land allocation, landscape design and slope gradients. Grass strips induce deposition of eroded particles when slopes are gentle (< 2%). Woodland strips decrease connectivity by being in the stream but deposit thinner sediment layers. Field boundaries have a role in the transport, but not really the quantity, of sediments. This model validation in the Belgian loess context allows us to use LandSoil in other similar environments in order to estimate the effects of landscape management scenarios. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Rainfall–runoff induced soil erosion causes important environmental degradation by reducing soil fertility and impacting on water availability as a consequence of sediment deposition in surface reservoirs used for water supply, particularly in semi-arid areas. However, erosion models developed on experimental plots cannot be directly applied to estimate sediment yield at the catchment scale, since sediment redistribution is also controlled by the transport conditions along the landscape. In particular, representation of landscape connectivity relating to sediment transfer from upslope areas to the river network is required. In this study, the WASA-SED model is used to assess the spatial and temporal patterns of water and sediment connectivity for a semi-arid meso-scale catchment (933 km2) in Brazil. It is shown how spatial and temporal patterns of sediment connectivity within the catchment change as a function of landscape and event characteristics. This explains the nonlinear catchment response in terms of sediment yield at the outlet.

Citation Medeiros, P. H. A., Güntner, A., Francke, T., Mamede, G. L. & de Araújo, J. C. (2010) Modelling spatio-temporal patterns of sediment yield and connectivity in a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J. 55(4), 636–648.  相似文献   

19.
The interactions between overland flow hydraulics and sediment yield were studied in flume experiments on erodible soil surfaces covered by rock fragments. The high erodibility of a non-cohesive fine sediment (D50 + 0·09mm) permitted the effects of local turbulence and scour on sediment yield to be examined. Overland flow hydraulics and sediment yield were compared for experiments with pebble (D50 + 1·5cm) and cobble (D50 + 8·6cm) rock fragment covers. Cover percentages range from 0 to 99 per cent. Rock fragment size strongly affects the relations between flow hydraulics and rock fragment cover. For pebbles spatially-averaged hydraulic parameters (flow velocity, flow depth, effective flow width, unit discharge, total shear stress, Darcy-Weisbach friction factor, percentage grain friction and grain shear stress) vary most rapidly within cover percentages at low covers (power functions). In contrast, for cobbles these parameters vary most rapidly within cover percentages at high covers (exponential functions). As the type of the function that describes the relation between flow hydraulics and cover percentage can be deduced from the ratio of rock fragment height to flow depth, the continuity equation can be employed to determine the actual coefficients of the functions, provided the regression of one hydraulic parameter (e.g. flow velocity) with cover percentage is known and a good estimate exists for two values of another hydraulic variable for a low and a high cover percentage. The variation of sediment yield with cover percentage is also strongly dependent on rock fragment size, but neither the convex-upward relation for pebbles, nor the positive relation for cobbles can be solely attributed to the spatially averaged hydraulics of sheet-flow. Rock fragments induce local turbulence that leads to scour hole development on the stoss side of the rock fragments while deposition commonly occurs in the wake. This local scour and deposition substantially affects sediment yield. However, scour dimensions cannot be predicted by spatially averaged flow hydraulics. An adjustment of existing scour formulas that predict scour around bridge piers is suggested. Sediment yield from non-cohesive soils might then be estimated by a combination of sediment transport and scour formulas.  相似文献   

20.
In this paper, we analyse how the performance and calibration of a distributed event‐based soil erosion model at the hillslope scale is affected by different simplifications on the parameterizations used to compute the production of suspended sediment by rainfall and runoff. Six modelling scenarios of different complexity are used to evaluate the temporal variability of the sedimentograph at the outlet of a 60 m long cultivated hillslope. The six scenarios are calibrated within the generalized likelihood uncertainty estimation framework in order to account for parameter uncertainty, and their performance is evaluated against experimental data registered during five storm events. The Nash–Sutcliffe efficiency, percent bias and coverage performance ratios show that the sedimentary response of the hillslope in terms of mass flux of eroded soil can be efficiently captured by a model structure including only two soil erodibility parameters, which control the rainfall and runoff production of suspended sediment. Increasing the number of parameters makes the calibration process more complex without increasing in a noticeable manner the predictive capability of the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号