首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimating global solar radiation   总被引:3,自引:0,他引:3  
A model is presented to calculate daily totals of global solar radiation. First, cloudless sky radiation is evaluated from transmission due to absorption and scattering. Cloud effects are added using cloud layer transmission. A simple expression to account for additional radiation due to reflection between the ground surface and cloud bases is also included. Atmospheric transmissions are obtained from previous studies. Precipitable water and observations of cloud type and amount for different layers in the atmosphere are the only meteorological variables required. The model is evaluated and tested with data collected at stations in and around Lake Ontario: a lake station near Grimsby in 1969 and land stations at Burlington, Scarborough, Peterborough, Trenton and Kingston, Ontario in 1972 and 1973 during the International Field Year for the Great Lakes. Good agreement between calculated and measured radiation was obtained at all stations, particularly for 5- and 10-day means. Model performance was largely independent of both cloud amount and season.  相似文献   

2.
Summary  Knowledge of ultraviolet radiation is necessary in different applications, in the absence of measurements, this radiometric flux must be estimated from available parameters. To compute this flux under all sky conditions one must consider the influence of clouds. Clouds are the largest modulators of the solar radiative flux reaching the Earth’s surface. The amount and type of cloud cover prevailing at a given time and location largely determines the amount and type of solar radiation received at the Earth’s surface. This cloud radiative effect is different for the different solar spectral bands. In this work, we analyse the cloud radiative effect over ultraviolet radiation (290–385 nm). This could be done by defining a cloud modification Factor. We have developed such cloud modification Factor considering two different types of clouds. The efficiency of the cloud radiative effect scheme has been tested in combination with a cloudless sky empirical model using independent data sets. The performance of the model has been tested in relation to its predictive capability of global ultraviolet radiation. For this purpose, data recorded at two radiometric stations are used. The first one is located at the University of Almería, a seashore location (36.83° N, 2.41° W, 20 m a.m.s.l.), while the second one is located at Granada (37.18° N, 3.58° W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables that cover the years 1993–94 in Almería and 1994–95 in Granada. Cloud cover information provided by the Spanish Meteorological Service has been include to compute the clouds radiative effect. After our study, it appears that the combination of an appropriate cloudless sky model with the cloud modification Factor scheme provides estimates of ultraviolet radiation with mean bias deviation of about 5% that is close to experimental errors. Comparisons with similar formulations of the cloud radiative effect over the whole solar spectrum provides evidence for the spectral dependency of the cloud radiative effect. Received November 15, 1999 Revised September 11, 2000  相似文献   

3.
Summary Satellite-derived datasets are used to verify the cloud cover and radiation field generated by a T62 (horizontal resolution) version of the operational global model at the National Meteorological Centre (NMC). An ensemble of five day forecasts for July 1985 is used, as well as 30 day climatological forecasts for July 1985, October 1985, January 1986, and April 1986.Monthly averages of radiation fields are compared with Earth Radiation Budget Experiment (ERBE) data. For the four months examined, clear-sky outgoing longwave radiation (clear-sky OLR) and absorbed shortwave radiation (clear-sky SW) tend to agree roughly with ERBE. Model global mean OLR, however, exceeds that of ERBE by 10 W m–2.Comparison of effective cloud cover to corresponding fields cataloged by the International Satellite Cloud Climatology Project (ISCCP C1) reveals deficiencies in the amount of supersaturation cloudiness and the vertical distribution of convective clouds. Large inaccuracies in model radiation fields are closely related to deficiencies in the cloud parameterization. An inventory of model cloudiness, in comparison to satellite data, is conducted.With 18 Figures  相似文献   

4.
自20世纪70年代气象卫星进入业务化观测以来,气象卫星已提供了40余年的观测数据。长时间序列的卫星数据为云气候研究提供了可能。基于长时间序列的卫星数据,构建云气候数据集会涉及诸如定标、反演算法、反演数据精度验证等方面。目前国际上也已生成了一系列的云气候数据集,如ISCCP,Patmos-x,CLARA和MODIS-ST等,这些数据集所选用的探测数据、反演算法不尽一致,数据集产品的时空属性各异。如何发挥极轨和静止气象卫星各自优势,融合两类卫星数据,形成高时间分辨率、质量稳定的长时间序列云气候数据集是未来需要解决的问题。  相似文献   

5.
We propose a new model to estimate daily global radiation from daily temperature range measurements. This model combines that of Majumdar et al. (Sol Energy 13(4):383–394, 1972) to estimate clear sky radiation with a Gompertz function to estimate the relation between temperature range and cloud transmittance. Model parameters are estimated from historical weather data: maximum and minimum temperatures and, if available, relative humidity; no other calibration is required. The model was parametrized and validated using 788 weather stations in Mexico. When calibrated using historical humidity data, daily global radiation was estimated with a mean root mean square error of 3.06 MJ m?2 day?1. The model performed well in all situations, except for a few stations around the Gulf of Mexico and in mountain areas. When using estimated humidity, the root mean square error of prediction was only slightly degraded (3.07 MJ m?2 day?1). Possible theoretical basis and applicability of this model to other environments are discussed.  相似文献   

6.
Summary  The high level cloudiness has increased over Alaska during the second half of this century, a period for which reliable data exist. This increase is most pronounced in areas close to the much traveled air routes from Europe to Anchorage which could be demonstrated by a comparison with two remote stations in western Alaska. This might be taken as an indication that the observed high cloudiness increase is caused by jet contrails. Seasonally, summer and spring give the greatest increases. Cloudiness is, of course, an important parameter for climatic change, and increased high level cloud amount in arctic and subarctic areas would lead to warmer temperature; these have been observed in Alaska. Received May 11, 2000 Revised November 17, 2000  相似文献   

7.
In the period 1960–2010, the land surface air temperature (SAT) warmed more rapidly over some regions relative to the global mean. Using a set of time-slice experiments, we highlight how different physical processes shape the regional pattern of SAT warming. The results indicate an essential role of anthropogenic forcing in regional SAT changes from the 1970s to 2000s, and show that both surface–atmosphere interactions and large-scale atmospheric circulation changes can shape regional responses to forcing. Single forcing experiments show that an increase in greenhouse gases can lead to regional changes in land surface warming in winter (DJF) due to snow-albedo feedbacks, and in summer (JJA) due to soil-moisture and cloud feedbacks. Changes in anthropogenic aerosol and precursor (AA) emissions induce large spatial variations in SAT, characterized by warming over western Europe, Eurasia, and Alaska. In western Europe, SAT warming is stronger in JJA than in DJF due to substantial increases in clear sky shortwave radiation over Europe, associated with decreases in local AA emissions since the 1980s. In Alaska, the amplified SAT warming in DJF is due to increased downward longwave radiation, which is related to increased water vapor and cloud cover. In this case, although the model was able to capture the regional pattern of SAT change, and the associated local processes, it did not simulate all processes and anomalies correctly. For the Alaskan warming, the model is seen to achieve the correct regional response in the context of a wider North Pacific anomaly that is not consistent with observations. This demonstrates the importance of model evaluation that goes beyond the target variable in detection and attribution studies.  相似文献   

8.
Summary In this study, spatial interpolation techniques have been applied to develop an objective climatic cartography of precipitation in the Iberian Peninsula (583,551 km2). The resulting maps have a 200 m spatial resolution and a monthly temporal resolution. Multiple regression, combined with a residual correction method, has been used to interpolate the observed data collected from the meteorological stations. This method is attractive as it takes into account geographic information (independent variables) to interpolate the climatic data (dependent variable). Several models have been developed using different independent variables, applying several interpolation techniques and grouping the observed data into different subsets (drainage basin models) or into a single set (global model). Each map is provided with its associated accuracy, which is obtained through a simple regression between independent observed data and predicted values. This validation has shown that the most accurate results are obtained when using the global model with multiple regression mixed with the splines interpolation of the residuals. In this optimum case, the average R 2 (mean of all the months) is 0.85. The entire process has been implemented in a GIS (Geographic Information System) which has greatly facilitated the filtering, querying, mapping and distributing of the final cartography.  相似文献   

9.
Summary In 1997 the Austrian ultraviolet radiation monitoring network was to built up to measure continuously erythemally-effective ultraviolet radiation. For this network the necessary measuring sites had to be selected by an objective method. Therefore a method was used, based on the de-correlation distances, calculated by the daily maximum of the global solar irradiance across the entire spectrum. For a correlation coefficient of 0.90, de-correlation distances were found to be in the order of 170 km (East-West) and 40 km (North-South). From this, 7 measuring sites wereselected to derive a total coverage of Austria. For the visualisation of the measured erythemally-effective solar radiation an optimum interpolation method was used to calculate the spatial distribution. The topography of Austria was used for height correction. The global solar radiation of 39 stations is also used to include the spatial distribution of cloud cover and the resulting attenuation of the erythemally-effective radiation. The combination of these two data sets provides an accuracy estimation of people’s exposure to erythemally-effective UV radiation within the mountainous country of Austria. Received September 12, 1999/Revised April 6, 2001  相似文献   

10.
Summary Global maps of the monthly mean net upward longwave radiation flux at the ocean surface have been obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top-of-the-atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (> 80 W m–2) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux (< 40 Wm–2) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover. The technique used in this study relies on GCM simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of the net longwave radiation at the surface over the oceans.With 9 Figures  相似文献   

11.
Summary Thin plate smoothing splines incorporating topographic dependence were used to interpolate daily global solar radiation in the Bavarian forest ecosystem monitoring network, with the degree of data smoothing determined by minimizing the generalized cross validation. A simple cross validation method was used to discuss the spatial distribution of mean relative errors at 18 forest climate stations. The results show that, from this network 14%–30% mean relative errors can be expected for most of these forest climate stations in summer, and 20%–30% mean relative errors can be found at a few of forest climate stations in winter. Time-averaging can reduce these interpolation errors. In this network a mean relative error of 10% can be expected for weekly and biweekly mean solar radiation at most of forest climate stations in summer. Large errors are related to low radiation amount under heavy cloud cover. Mean relative errors increase as daily global solar radiation decreases. Received April 20, 1999 Revised January 20, 2000  相似文献   

12.
近20年全球总云量变化趋势分析   总被引:29,自引:2,他引:29       下载免费PDF全文
利用ISCCP月平均云气候资料集的总云量资料, 采用趋势分析的方法, 得到1983年7月至2001年9月近20年来全球平均总云量的变化趋势, 并分析云量变化的可能原因。近20年全球增温幅度加快, 研究这期间云的变化, 对气候研究和模拟具有重要的意义。结果表明:平均大气环流决定总云量的分布;全球平均总云量的变化趋势在20世纪80年代末发生逆转, 即由增加转为减少;全球平均云量呈减少的变化趋势, 2000年与1987年相比, 减少量约占平均总云量的4%;从地理位置上看, 云量的变化存在区域性差异, 热带和中纬度地区的总云量减少较多, 高纬度地区云量略有增加, 其中南极大陆云量增加较多。  相似文献   

13.
Summary Despite its importance to climate change, reliable and calibrated measurements of solar radiation are available only after 1992 for Australia. In this study we extend the data base from 1967 to 2004 by the development of a cloud-based solar radiation model. Results show no significant change in the majority of stations, although slightly more than one quarter of the stations report a significant decrease of solar radiation with a maximum of just less than one percent per decade. Trend analyses also detect an upturn in many of the southern stations in the late eighties which appear to relate to changes in middle and high cloud cover. Authors’ addresses: Manuel Nunez, School of Geography and Environmental Studies, University of Tasmania, Private Bag 78, Hobart 7005, Australia; Yun Li, CSIRO Mathematical and Information Sciences, Wembley, WA 6913, Australia.  相似文献   

14.
本文对全球平均、各纬带平均和几种特殊下垫面条件下大气顶和地表面的净辐射随云量变化的情况进行定量分析,并讨论了净辐射对云量变化的敏感性随各参数改变的情况。另外还定性地讨论了云在全球气候中的反馈作用以及这种反馈作用随各参数变化的特点。指出:一般条件下,净辐射对于云量变化是敏感的,只有当气候参数变化到临界值附近时,对气候的模拟可以不考虑云量的变化。从云量对气候的反馈来看,在气候参数发生变化时,气候系统的稳定性会发生本质的改变。  相似文献   

15.
Summary A model that uses two parameters to describe the state of the sky is presented. The parameters are the total cloud amount and a new two-value parameter – the sunshine number – stating whether the sun is covered or uncovered by clouds. Regression formulae to compute instantaneous cloudy sky global and diffuse irradiance on a horizontal surface are proposed. Fitting these relationships to Romanian data shows low bias errors for global radiation but larger errors for diffuse radiation. The model’s accuracy is significantly higher than one based on total cloud amount alone. The model is used to generate time-series of solar radiation data. A first approximate relationship, neglecting auto-correlation of the sunshine number, is used in the computations. Received July 17, 2001 Revised November 7, 2001  相似文献   

16.
Summary A set of the inhomogeneity factor for high-level clouds derived from the ISCCP D1 dataset averaged over a five-year period has been incorporated in the UCLA atmospheric GCM to investigate the effect of cirrus cloud inhomogeneity on climate simulation. The inclusion of this inhomogeneous factor improves the global mean planetary albedo by about 4% simulated from the model. It also produces changes in solar fluxes and OLRs associated with changes in cloud fields, revealing that the cloud inhomogeneity not only affects cloud albedo directly, but also modifies cloud and radiation fields. The corresponding difference in the geographic distribution of precipitation is as large as 7 mm day−1. Using the climatology cloud inhomogeneity factor also produces a warmer troposphere related to changes in the cloudiness and the corresponding radiative heating, which, to some extent, corrects the cold bias in the UCLA AGCM. The region around 14 km, however, is cooler associated with increase in the reflected solar flux that leads to a warmer region above. An interactive parameterization for mean effective ice crystal size based on ice water content and temperature has also been developed and incorporated in the UCLA AGCM. The inclusion of the new parameterization produces substantial differences in the zonal mean temperature and the geographic distribution of precipitation, radiative fluxes, and cloud cover with respect to the control run. The vertical distribution of ice crystal size appears to be an important factor controlling the radiative heating rate and the consequence of circulation patterns, and hence must be included in the cloud-radiation parameterization in climate models to account for realistic cloud processes in the atmosphere.  相似文献   

17.
利用云贵高原1961~2005年9个日射站辐射和气候观测资料以及能见度观测资料等,采用数理统计方法,研究了该区域到达地表太阳总辐射量(以下简称总辐射)变化特征及其影响因子.结果表明:该区年总辐射的空间分布特点是西部高于东部,丽江站最高(6207MJ·m-2·a-1),遵义站最低(3340MJ·m-2·a-1).1961...  相似文献   

18.
The ability of a high resolution (T106) version of the ECHAM3 general circulation model to simulate regional scale surface radiative fluxes has been assessed using observations from a new compilation of worldwide instrumentally-measured surface fluxes (Global Energy Balance Archive, GEBA). The focus is on the European region where the highest density of observations is found, and their use for the validation of global and regional climate models is demonstrated. The available data allow a separate assessment of the simulated fluxes of surface shortwave, longwave, and net radiation for this region. In summer, the incoming shortwave radiation calculated by the ECHAM3/T106 model is overestimated by 45 W m–2 over most of Europe, which implies a largely unrealistic forcing on the model surface scheme and excessive surface temperatures. In winter, too little incoming shortwave radiation reaches the model surface. Similar tendencies are found over large areas of the mid-latitudes. These biases are consistent with deficiencies in the simulation of cloud amount, relative humidity and clear sky radiative transfer. The incoming longwave radiation is underestimated at the European GEBA stations predominantly in summer. This largely compensates for the excessive shortwave flux, leading to annual mean net radiation values over Europe close to observations due to error cancellation, a feature already noted in the simulated global mean values in an earlier study. Furthermore, the annual cycle of the simulated surface net radiation is strongly affected by the deficiencies in the simulated incoming shortwave radiation. The high horizontal resolution of the GCM allows an assessment of orographically induced flux gradients based on observations from the European Alps. Although the model-calculated and observed flux fields substantially differ in their absolute values, several aspects of their gradients are realistically captured. The deficiencies identified in the model fields are generally consistent at most stations, indicating a high degree of representativeness of the measurements for their larger scale setting.  相似文献   

19.
Summary  The global distribution of the contrail coverage is computed for several scenarios of aviation in the years 2015 and 2050 and compared to 1992 using meteorological analysis data representative of present temperature and humidity conditions and assuming 0.5% cover in a reference region 30° W–30° E, 35° N–75° N covering parts of western Europe and the North Atlantic. The mean contrail coverage of the Earth is computed to increase by a factor of about three compared to 1992 and to reach 0.25% in 2015. For three different scenarios of aviation and for constant climatic conditions, the global mean contrail coverage reaches values between 0.26% and 0.75% for 2050. Contrail coverage increases more strongly than total fuel burn mainly because of more traffic in the upper troposphere and because of more efficient engines with cooler exhaust. The overall efficiency of propulsion is expected to grow from about 0.3 in the fleet average of 1992, to 0.4 in 2015, and to 0.5 in 2050. The expansion of air traffic makes Canada, Alaska, the North Pacific route from North America to Japan and most of the Asian continent new regions where contrails are expected to cover more than 0.5% on average. Received September 7, 1998 Revised January 4, 1999  相似文献   

20.
ISCCP产品和我国地面观测总云量差异   总被引:7,自引:3,他引:4       下载免费PDF全文
国际卫星云气候计划ISCCP是国际上较权威和客观的云气候性研究计划, 自1983年以来为研究全球云和辐射平衡、云水资源分布等提供了有价值的数据。在分析总云量卫星和地面两种观测方式差异的基础上, 研究了1984-2006年ISCCP D2产品和我国地面观测云资料数据集总云量空间及时间差异。尽管两套资料能一致揭示我国总云量的分布形势和气候变化特征, 但区域性差异仍比较明显。天基、地基数据可对比格点上, 全国平均而言总云量卫星观测结果比地面观测偏高8.46%, 华南地区差异最小、东北地区差异最大。气候变化趋势分析结果表明:近23年我国总云量呈减少趋势, ISCCP D2产品总云量每年减少速度为0.015%, 小于地面观测的总云量每年减少速度 (0.063%); 东北地区总云量缓慢增多, 而青藏高原、西北地区总云量减少。利用卫星和地面资料均以累积距平法检测出1984—2001年总云量减少、2002-2006年总云量显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号