首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
东亚和太平洋上空平均垂直环流----(一)夏季   总被引:23,自引:9,他引:23  
本文利用中央气象局出版的《北半球高空气候图集》中的风场资料,计算了50°E—130°W,0°—50°N范围内,七月平均850mb—100mb各标准层上的垂直运动,分析了不同区域的经向和纬向垂直环流的特点。指出:夏季130°E以西的低纬度为巨大的西南季风环流区,此外在高原的南北两侧还各存在一较小的经向环流圈,影响着高原附近的天气和气候;160°E以东的中低纬度的海洋上空为经典的Hadley环流所控制,其强度和影响的范围自西向东递增;由于青藏高原地形及夏季的热源作用,使其与西半球,南半球和中东太平洋的天气系统产生遥相关;平均直接从青藏高原上升的气流对西太平洋副高的贡献不大,而平均从西边直接下沉到西太平洋副高的气流是从高原以东的大陆上升的。最后根据计算和分析结果给出了青藏高原及其邻近地区三维空间的垂直环流示意图。  相似文献   

2.
杨广基 《大气科学》1984,8(2):227-231
Reginald.E.Newell等曾计算了冬夏两季5℃和5°N的沃克环流(Walker Cell),给出了赤道地区纬向气流的特征。Krishnamurti曾根据200mb位势流的计算结果,推论出北半球夏季0°-30°N和北半球冬季15°S—15°N的理想纬向垂直环流圈,给出了热带和副热带地区纬向垂直环流的特征。叶笃正等指出青藏高原地形及其夏季的热源作用,使其与西半球、南半球和中、东太平洋的天气系统产生遥相关,给出了青藏高原地区和遥  相似文献   

3.
杨广基 《大气科学》1984,8(4):457-464
本文应用多年平均的风场、垂直速度场和温度场,研究了平均经纬向垂直环流和感热垂直输送的关系.并且讨论了北半球中低纬不同地理区域感热垂直输送的特征. 研究结果表明,夏季北半球中低纬地区感热垂直输送的方向基本上和平均垂直环流的方向相一致.大型定常涡旋对感热输送的高值区和涡旋位能向涡旋动能转化的高值区均在25°—45°N之间的中高空,不同的是后者中心比前者高. 850—200mb之间的对流层中,北半球中低纬有三个感热向上输送的高值区(亚洲大陆及其附近地区,中、东太平洋和大西洋大部分地区)和三个感热向下输送的高值区  相似文献   

4.
亚洲上空夏季平均环流的结构及其热源分析   总被引:2,自引:2,他引:2  
本文运用Boogaard的资料(对国内部分经过补充订正)和用连续方程计算了亚洲地区各层的垂直运动场。另外设计了一个间接计算热源的方法并计算了该地区的大气热源。在此基础上对亚洲地区夏季(7月)平均环流结构进行了研究。其主要结果如下:(1)在30°N以南地区西太平洋副热带高压的下沉主要来自东侧高空气流,也来自南侧的Hadley环流的上升支和高原及大陆上升气流,后两者均在300mb以下。而30°N以北,高原及大陆上升气流除了部分下沉于西太平洋地区外,主要在太平洋中部槽槽后下沉。(2)亚洲夏季(7月)大气热源中心在孟加拉湾北岸,而不在西藏高原的上空。  相似文献   

5.
用国家气象中心1992年6月10日至7月23日T42中期数值预报模式格点资料,分析了中高纬度夏季垂直环流的低频振荡。发现中高纬度纬向垂直环流与热带纬向环流不同存在着20-40天的局地低频振荡,在热带季风中断时,35-45°N范围内中高纬度纬向垂直环流主要表现为120°E附近区域内下沉气流加强。初步探讨了中高纬度地区经圈环流的低频振荡,所选范围为100-120°E平均低频经向环流,热带季风中断时,下沉气流在30-40°N区域内加强。通过对中高纬度地区垂直环而的低频振荡的分析,探讨了中高纬度地区垂直环流的低频振荡与华北地区夏季干旱的可能联系。由于热带季风中断时,主要降雨带位于我国江淮一带,此时垂直环流表现为在对流层低层28°N左右范围内为上升运动区,在35-45°N区域附近内下沉气流加强,即我国华北地区上空盛行下沉气流,对应于该地区干旱、少雨。  相似文献   

6.
平流层剩余环流及其时间演变特征   总被引:3,自引:1,他引:2  
陈权亮  陈月娟 《大气科学》2007,31(1):136-144
平流层剩余环流是由剩余速度经向分量和垂直分量构成的平流层经向-垂直环流,它对于对流层-平流层相互作用和物质交换起着十分重要的作用。作者利用1979~2003年NCEP II再分析资料计算了剩余速度经向分量和垂直分量, 并与数值模拟结果进行了比较,再用计算的剩余环流讨论了它的季节变化、年际变化和长期变化趋势。计算结果表明,剩余环流的上升气流从低纬度赤道地区对流层顶上升到平流层下部,然后向极向下运动,在中纬度地区下沉, 进入对流层,这也就是Brewer-Dobson环流。计算结果同数值模拟结果比较一致。由此可见,可以利用NCEP资料得到比较清晰的剩余环流和Brewer-Dobson环流。剩余环流有明显的季节变化,上升气流的中心随着季节的变化在赤道地区南北移动,春秋季节其中心基本上位于赤道附近,南北半球大致呈对称分布,只是北半球副热带地区的下沉气流要比南半球强。在冬夏季节,上升气流的中心分别位于南北纬10°附近。北半球夏季的上升气流要比南半球夏季的上升气流强,同时冬半球的下沉气流比夏半球的下沉气流强。剩余环流还有年际变化和准两年周期振荡特征,在纬向风为西风位相时,赤道地区的上升气流比较弱;而在东风位相时,上升气流和水平方向的输送相对比较强。剩余环流的十年际变化表现为,1979~1983年、1990~1995年、2000~2003年较强,其他年份则较弱。在过去25年,就总的变化趋势而言,剩余环流的上升气流有所增强,平流层下部向中纬度地区的输送也有所增强,环流整体形势是增强的。  相似文献   

7.
本文利用1991年北太平洋的海温资料,寻找造成1991年初夏江淮地区洪涝的可能因素。为此计算了1991年1—6月北太平洋海温距平场。发现1991年初夏北太平洋中低纬度海温距平呈现明显的西正东负分布,这有利于北太平洋中低纬纬向垂直环流加强,从而使得江淮入梅早、梅雨量大。另外,还计算了1980—1991年近十二年西太平洋的海温距平场,发现西太平洋海温的异常直接影响西太平洋副高的位置和强度。1991年初夏副高位置比常年偏西偏北,有利于东南季风和跨赤道气流的爬坡运动,使江淮地区降水量增大。1991年初夏赤道东太平洋一直为正海温距平。该海域高温增强了中低纬纬向垂直环流并通过哈得来环流影响中纬度大气环流。  相似文献   

8.
林美静  范可  王会军 《气象学报》2010,68(3):309-314
西北太平洋区域纬向风垂直切变的变化是影响西北太平洋热带气旋生成和发展的一个重要的动力因子,弱的纬向风切变有利于热带气旋的发生、发展。文中将西北太平洋区域纬向风垂直切变幅度(MWS)定义为850与200 hPa的纬向风之差的绝对值,以研究MWS的气候特征。结果表明,西北太平洋区域的MWS有两个主要空间模态,第1空间模态表现为在15°N以南的热带西太平洋存在MWS东西向变化相反的两个区域,20°N附近的热带西太平洋MWS的变化与其以北海区的MWS的变化相反。第2空间模态表现为在热带太平洋140°E东、西的变化相反。研究了两个模态相关的大气环流特征,发现去掉强ENSO信号后,第1模态不但与低纬度大气环流有关,而且还与南、北半球中高纬度的大气环流有关,第2模态主要与热带西太平洋和北太平洋局地大气环流有关。另外,第1模态的时间系数与赤道东太平洋海温、西北太平洋台风生成频次有着密切联系;第2模态时间系数与西北太平洋台风活动频次联系密切。  相似文献   

9.
利用大气环流三维分解方法研究了1979—2008年ENSO事件期间热带印度洋和太平洋地区海气相互作用的机制。研究表明ENSO事件期间存在明显的三维"齿轮式"耦合特征;在ENSO事件盛期,与NCEP再分析资料的垂直运动相比,大气环流三维分解方法揭示的东印度洋-西太平洋地区的下沉运动更强,范围更宽。大气环流三维分解方法把垂直速度分解为纬向分量和经向分量两部分,纬向分量表现为很强的下沉运动,而经向分量表现为上升运动,垂直速度的纬向分量和经向分量相互抵消了一部分,综合的结果表现为很强的下沉运动。在热带地区,垂直速度ω*的纬向分量ωW要大于其经向分量ωH,ωW反映了ω*的主要特征;在分析垂直运动方面,与NCEP再分析资料中的垂直速度相比,大气环流三维分解方法具有一定的优点。  相似文献   

10.
李国庆  陈辉  谷修涵 《气象学报》2002,60(3):301-308
在旋转流体盘中做物理实验 ,模拟研究北半球东半部对流层夏季平均大气环流的形成物理机制。用镍铬电阻丝通电加热实验盘底作为热源 ,用冷水循环的铜管对实验盘底制冷作为冷源。将热源及冷源分布在绘有北半球极赤射面投影地图的底面上。人工地制造出中高纬西风带及越赤道气流模型。用流体物理模拟实验方法研究北半球东半部对流层夏季平均大气环流物理机制。逐个地试验了海陆温差、青藏高原地形及其高空热源、中高纬西风带 ,及来自南半球的越赤道气流的作用  相似文献   

11.
Based on ECMWF daily grid point data in summer(May-August),1981,the distribution features of the source and sink of kinetic energy of atmosphere 30-60 day oscillation,including its horizontal distribution characteristics and its vertical structure characteristics,are investigated systematically with diagnostic analysis methods over a latitude belt between 80°N and 60°S.Also,the probable reasons for the existence of the source and sink of low frequency kinetic energy(LFKE) are discussed preliminarily.Results show that the horizontal distribution of the sources and sinks of kinetic energy of atmospheric 30-60 day oscillation is extremely different.The significant sources and sinks of LFKE mainly exist in the oceans and the coastal regions of continents or islands in the mid-high latitudes.It is also found that,in the vertical direction,the sources and sinks of kinetic energy of 30-60 day oscillation display barotropic structure in the mid-high latitudes of both hemispheres,but dispaly baroclinic structure in the equtorial region,and in the horizontal direction,the sources and sinks mainly display zonal wave-like distribution.The source and sink of LFKE are determinded by ageostrophic wind effect,frictional effect,interaction between sub-grid-scale systems,nonlinear interaction,and the flux-divergence of LFKE transported by transient wind.There are some regional reasons for the generation of sources and sinks which are not completely identical in different areas.  相似文献   

12.
APPLICATION OF PROBABILITY WAVE IN LONG-RANGE SEASONAL PREDICTION   总被引:1,自引:0,他引:1       下载免费PDF全文
It is discussed that the anomaly in long-range weather is due to the stable sustained circulation.Waveson monthly or seasonal departure maps can essentially be regarded as probability waves which reflectthe anomaly distribution of heat sources and sinks on the earth's surface.The persistent stable circulationcreats these distributions which serve as persistent disturbance sources and in turn feedback the generalcirculation with persistent stability in later period.The departure probability waves on a six-month (September—February)chart reflect the anomalous dis-tribution of heat sources and sinks on the underlying surface.The waves north of 30°N move slowly andeastward on the Eurasian Continent against the temperature gradient,while they are stationary south of 30°N.A statistical model is developed to predict the spring—summer temperature and precipitation of next yearby using the six-month departure probability wave of last year.During 1982--1985 it was tested in severalprovinces of northern China with encousaging results.  相似文献   

13.
本文用热力学方程和水汽连续方程计算了东南亚地区1981年初夏的大气热源和水汽汇的分布情况。文章讨论了大气热源的演变与该地区经向垂直环流的相互关系,并讨论了大气热源和经向环流在南海和中南半岛的差异。分析结果表明,经向环流圈与大气冷热源的分布密切相关。东亚季风建立后的大气热源中心在南海北部,热汇区在赤道附近,相应的最大上升气流也出现在南海下沉区主要在赤道南侧,而且南海的经向环流比中南半岛的要强盛的多。大气热源对于经向环流圈的形成和维持有很大的作用。   相似文献   

14.
Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in June in the south of China is discussed.During the flood(drought) events,there exists an anomalous low-frequency anticyclone(cyclone) at the low level of the troposphere over the South China Sea and the northwestern Pacific,accompanied with anomalous low-frequency heat sinks(heat sources),while there exists an anomalous low-frequency cyclone(anticyclone) with anomalous heat sources(sinks) over the area from the south of China to the south of Japan.On average,the phase evolution of the low-frequency in drought events is 7 to 11 days ahead of that in flood events in May to June in the south of China.In flood events,low-frequency heat sources and cyclones are propagated northward from the southern South China Sea,northwestward from the warm pool of the western Pacific and westward from the northwestern Pacific around 140°E,which have very important impact on the abundant rainfall in June in the south of China.However,in drought events,the northward propagations of the low-frequency heat sources and cyclones from the South China Sea and its vicinity are rather late compared with those in flood events,and there is no obvious westward propagation of the heat sources from the northwestern Pacific.The timing of the low-frequency heat source propagation has remarkable impact on the June rainfall in the south of China.  相似文献   

15.
本文首先讨论了造成长期异常天气的原因:主要是由于环流的持续稳定。指出月、季距平图上所反映的波动实质上是几率波动,它反映了下垫面冷热源(包括:雪盖、海冰、海温等)的异常分布。从而得出持续稳定的环流造成了下垫面冷热源的异常,而下垫面冷热源的异常分布作为一个持久性的扰动源对大气又起反馈作用,又造成了在某些特定地区环流的持续稳定,这样又形成了后期冷热源异常的再分布。 六个月距平几率波主要是反映下垫面冷热源的异常分布。它的变化是十分缓慢的。在30°N以南几乎呈静止状态,而30°N以北的几率波在欧亚大陆多数情况下是缓慢东进的。它的运动方向与下垫面的温度梯度相反。 最后利用半年时间尺度的距平几率波的特性,提出一种利用前一年秋到冬季的距平几率波预报次年春到夏季的降水、气温统计模型。经河北、内蒙、辽宁、吉林等省、区某些气象台1982—1985年的实地试用,反映较好,一致认为预报准确率比较稳定。  相似文献   

16.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

17.
冬季青藏高原对其周围地区流场影响的模拟实验   总被引:1,自引:0,他引:1  
本文应用转盘模拟实验的方法,模拟了冬季青藏高原及其邻近地区流场的状况,通过实验看到: 冬季东亚大槽的形成和强弱,不仅与海陆分布及高原的动力作用有关,而且高原的热力作用也很重要;高原及其邻近地区上空的大气作为冷源,对其南北两侧的垂直环流的形成也有直接关系。此外,我们看到冷高原可使南支气流产生小槽东移的现象。 在实验中,我们分别用中性高原模型,冷性高原模型和部分加热高原模型作了对比实验,揭示了高原的一系列动力作用和热力作用。  相似文献   

18.
By use of daily OLR data of eight years (1975—1977,1979—1983),the propagation features of 30—60day low-frequency oscillation (LFO) and its teleconnections are studied.The results are as follows:(1)The LFO is quite active in the regions of the South China Sea,mainland of China and subtrop-ical western-North-Pacific.(2)The zonal propagation direction of LFO is eastward along the equator and gradually changes towestward north of 10°N and south of 10°S.The westward propagation of LFO dominates in the areaof 15°N-30°N,Eastern Hemisphere.(3)In the region of east Asia (120°E),the main meridional directions are northward in tropics andsouthward in high latitudes.These two opposite propagating LFO are merged in the vicinity of subtropics.Sometimes,the northward propagating LFO can penetrate through the subtropics to high latitudes and viceversa.On the average,the northward propagation dominates in summer time.(4)The EOF analysis of the summer data shows that there are two main eiginvector centers of OLR-LFO,one is located over the Bay of Bengal and the other over the tropical western-North-Pacific.Thesign of these two centers are just opposite to each other.It should be noted that on the normal,thesetwo oscillation centers mentioned above coincide with the two strong centers of atmospheric 12eat source insummer.It means that the activities of LFO in the Indian monsoon system and the East Asian monsoonsystem are reverse.For the first component of eiginvector,a belt of LFO with the same sign stretcheswith a SW-NE direction from the tropical center in the western-North-Pacific northwestward,passing bythe point at 15°N,180°E and reaches southwestern states of the United States.To the north and southof this belt,there are other two belts with opposite sign.Again further north and south of them,there areother two belts with the same sign as the first one.Furthermore,to the NW (near Taiwan) and SE (10°S,160°W) of the tropical East Asian center,there is,respectively,another center with opposite sign.Analmost straight line can go through all three centers.The main characteristics of the second,third andfourth components of eiginvector are the same as that of the first one.It indicates that the teleconnectioncentered around the tropical East Asian center of LFO is characterized by a SW-NE oriented wave frontand the energy transport of oscillation from SE to NW.That is to say,the oscillations in the tropicalwestern-North-Pacific may be the source of those in China during summer.We call this teleconnection pat-tern the WPC (western Pacific-China) pattern so as to distinguish from the PNA pattern.  相似文献   

19.
东亚低纬地区局地Hadley环流特征及其与大气臭氧的关系   总被引:2,自引:1,他引:1  
利用1975—2008年NCEP/NCAR的逐月平均风场资料及1975—2001年ECMWF的逐月多层臭氧质量混合比资料,用大气环流三维分解方法研究了东亚低纬度地区之局地Hadley环流的结构及年代际演变特征,分析了该区域局地Hadley环流异常时对应大气臭氧的空间距平分布。研究结果表明:(1)东亚低纬度地区局地Hadley环流既与纬圈平均Hadley环流具有明显的季节变化,但又具有明显区别于纬圈平均Hadley环流的自身结构特征:除冬季存在明显向南、向北输送的两闭合环流圈外,局地Hadley环流在其余季节均以向南输送为主;(2)该局地Hadley环流具有不同于纬圈平均Hadley环流的年代际演变特征,在整个研究时段上以振荡变化为主,并没有表现出象纬圈平均值那样明显的增强趋势;(3)区域赤道上空平流层20~50 hPa大气臭氧的正负距平异常中包含有局地Hadley环流的异常信息:当局地Hadley环流异常强时,区域赤道上空20~50 hPa大气臭氧有一显著负距平异常中心,反之亦然。  相似文献   

20.
1950年平均经圈环流与角动量的平衡   总被引:4,自引:2,他引:4  
叶笃正  邓根云 《气象学报》1956,27(4):307-321
本文利用了Buch和Starr与White所计算的1950年各纬度上空的平均经向风速([V]),绘制了子午面上的平均环流(全年:图1,冬季:图2,夏季:图3),图中显示出三个环型(cell),低纬度和高纬度的两个正环型与中纬度的逆环型。 1950年平均西风急流的位置正好处于中纬度的逆环流之中。全年平均的赤道辐合线位于北纬5°左右。自夏至冬三个环型均向北移,冬季半球Hadley环型伸向夏季半球去。三个环型的强度都是冬季大。 对于1950年北半球10°—70°的角动量平衡也作了分析(图4),并绘制了这个空间中角动量输送流线图(图5),其中应该提出,就是通过东西风的界面流线是铅直的,也就是总的来说,在东风带里产生的角动量不是在水平方向上输送到西风带里去,而是在铅直方向上输送到低纬度的高空西风里去,再由那里在水平方向上送到中高纬度去。 最后对于平均纬圈环流的维持也作了讨论,结论是:在中高纬度大型扰动起着主导作用,在低纬度则平均经圈环流是重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号