首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The dynamics of the occurrence frequency of extreme anomalies of monthly mean air temperature and its effect on precipitation and river water discharge in the 20th century are studied using weather observations at 40 stations and data on the hydrological regime of 34 rivers in Georgia.  相似文献   

2.
Compared are the estimates or regional changes in temperature and precipitation on the territory of Russia for two methods of the spatial averaging of meteorological station data, one of which is adapted to the sparse observational network and takes account of the station weights proportional to the area of their influence. Considered are several variants of the zoning with the separation of the different number of regions. Formulated is a criterion of the zoning adequacy to the problem of the revelation and analysis of regional climate changes. Estimated is the representativeness of the network of observations of temperature and precipitation for separate regions. Presented are the estimates of regional trends of air temperature and precipitation for the century interval and for the recent decades obtained on the basis of the full archive of available data for the zoning attached to the administrative division of the Russian Federation into the federal districts.  相似文献   

3.
Analyzed are the synoptic and hydrological conditions of the generation of extremely high water content of Primorye rivers in the autumn of 2012. Revealed are the general features of atmospheric circulation, precipitation, water content, and hydrological regime of rivers. Presented are quantitative parameters characterizing the extremity of observed events. The expert assessment of the probability of such combination of events demonstrates that its return period is about 500–1000 years if there is assumption on the stationarity of processes. Taking into account the revealed facts and available assessments of climate changes it can be supposed that the analyzed event rather indicates real changes in the hydrological regime of the region than represents a rare random phenomenon.  相似文献   

4.
青海地表水资源的变化及影响因子   总被引:8,自引:0,他引:8  
通过分析近38年青海省主要河流径流量及其流域降水、气温的变化趋势,着重研究了干旱气候对青海地表水资源的影响。结果表明,内陆河多为高山冰雪融水和雨水混合补给型河流,外流河多为以雨水补给为主的河流;青海地表水资源呈减少趋势,其减少趋势进入90年代后尤为明显;气温和降水是影响青海地表水资源的主要气候因子,其中气温升高加剧了流域蒸发量的增大和干旱影响,减少了地表径流量;而90年代以来降水量的减少特别是汛期降水量的减少直接影响到径流量的减少。  相似文献   

5.
Water temperature influences the distribution, abundance, and health of aquatic organisms in stream ecosystems, so understanding the impacts of climate warming on stream temperature will help guide management and restoration. This study assesses climate warming impacts on stream temperatures in California’s west-slope Sierra Nevada watersheds, and explores stream temperature modeling at the mesoscale. We used natural flow hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year time series of weekly streamflow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, an equilibrium temperature model, to estimate stream temperatures. Air temperature was uniformly increased by 2°C, 4°C, and 6°C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were unchanged from historical values. Raising air temperature affects precipitation partitioning into snowpack, runoff, and snowmelt in WEAP21, which change runoff volume and timing as well as stream temperatures. Overall, stream temperatures increased by an average of 1.6°C for each 2°C rise in air temperature, and increased most during spring and at middle elevations. Viable coldwater habitat shifted to higher elevations and will likely be reduced in California. Thermal heterogeneity existed within and between basins, with the high elevations of the southern Sierra Nevada and the Feather River watershed most resilient to climate warming. The regional equilibrium temperature modeling approach used here is well suited for climate change analysis because it incorporates mechanistic heat exchange, is not overly data or computationally intensive, and can highlight which watersheds are less vulnerable to climate warming. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and should be incorporated into modeling studies, restoration assessments, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes.  相似文献   

6.
Results of simulation of radiation, cloud cover, surface air temperature, sea-level pressure, and hydrological regime components for Russia with the help of an ensemble of CMIP3 global climate models is analyzed. Despite a large spread among the models, the CMIP3 AOGCM ensemble simulations of the key characteristics of the observed surface climate agree well with observations, anyway in averaging over areas of vast regions, from watersheds of large rivers to the whole of Russia. These means (ensemble-and area-averaged values) often fall into the range of estimates derived from observations. This suggests the existence of uncertainty in the estimates obtained from simulations as well as from observational data. Comparison of different-generation models demonstrates a gradual improvement of the AOGCM simulation of surface climate characteristics. In general, the averaging over the CMIP3 AOGCM ensemble allows us to state that the ensemble is suitable for estimates of future climate changes.  相似文献   

7.
干旱气候对青海地表水资源影响的研究   总被引:2,自引:0,他引:2  
通过分析近38年青海省主要河流径流量及其流域降水、气温的变化趋势,研究了干旱气候对青海地表水资源的影响。结果表明,内陆河多为高山冰雪融水和雨水混合补给型河流,外流河多为以雨水补给为主的河流;青海地表水资源呈减少趋势,其减少趋势进入90年代后尤为明显;气温和降水是影响青海地表水资源的主要气候因子,其中气温升高加剧了流域蒸发量的增大和干旱影响,减少了地表径流量;而90年代以来降水量的减少特别是汛期降水量的减少直接影响到径流量的减少。  相似文献   

8.
Climatic changes at the Earth's surface propagate slowly downward into theground and modify the ambient ground thermal regime. However, causes of soiltemperature changes in the upper few meters are not well documented. One majorobstacle to understanding the linkage between the soil thermal regime andclimatic change is the lack of long-term observations of soil temperatures andrelated climatic variables. Such measurements were made throughout the formerSoviet Union with some records beginning at the end of the 19th century. Inthis paper, we use records from Irkutsk, Russia, to demonstrate how the soiltemperature responded to climatic changes over the last century. Both airtemperature and precipitation at Irkutsk increased from the late 1890s to the1990s. Changes in air temperature mainly occurred in winter, while changes inprecipitation happened mainly during summer. There was an anti-correlationbetween mean annual air temperature and annual total precipitation, i.e., more(less) precipitation during cold (warm) years. There were no significanttrends of changes in the first day of snow on the ground in autumn, but snowsteadily disappeared earlier in spring, resulting in a reduction of the snowcover duration. A grass-covered soil experiences seasonal freezing for morethan nine months each year and the long-term average maximum depth ofseasonally frozen soils was about 177 cm with a range from 91 cm to 260 cm.The relatively lower soil temperature at shallow depths appears to representthe so-called `thermal offset' in seasonally frozen soils. Changes in meanannual air temperature and soil temperature at 40 cm depth were about the samemagnitude (2.0 °C to 2.5 °C) over the common period of record, but thepatterns of change were substantially different. Mean annual air temperatureincreased slightly until the 1960s, while mean annual soil temperatureincreased steadily throughout the entire period. This leads to the conclusionthat changes in air temperature alone cannot explain the changes in soiltemperatures at this station. Soil temperature actually decreased duringsummer months by up to 4 °C, while air temperature increased slightly.This cooling in the soil may be explained by changes in rainfall and hencesoil moisture during summer due to the effect of a soil moisture feedbackmechanism. While air temperature increased about 4 °C to 6 °C duringwinter, soil temperature increased by up to 9 °C. An increase in snowfallduring early winter (October and November) and early snowmelt in spring mayplay a major role in the increase of soil temperatures through the effects ofinsulation and albedo changes. Due to its relatively higher thermalconductivity compared to unfrozen soils, seasonally frozen ground may enhancethe soil cooling, especially in autumn and winter when thermal gradient isnegative.  相似文献   

9.
Probable climate changes in Russia in the 21st century are considered based on the results of global climate simulations with an ensemble of coupled atmosphere-ocean CMIP3 models. The future changes in the surface air temperature, atmospheric pressure, cloud amount, atmospheric precipitation, snow cover, soil water content, and annual runoff in Russia and some of its regions in the early, middle, and late 21st century are analyzed using the A2 scenario of the greenhouse gas and aerosol emission. Future changes in the yearly highest and lowest surface air temperatures and in summer precipitation of high intensity are estimated for Russia. Possible oscillations of the Caspian Sea level associated with the expected global climate warming are estimated. In addition to the estimates of the ensemble mean changes in climatic characteristics, the information about standard deviations and statistical significance of the corresponding climate changes is given.  相似文献   

10.
The variations in average annual surface air temperature, precipitation, and runoff in the Selenga River basin (within Russia) are analyzed. It is demonstrated that the considerable increase in average annual temperature of surface air layers occurred in the 1980s-1990s. The decrease in peak water discharge in the rivers and the increase in the frequency of low-water periods were revealed in the forest-steppe and steppe zones of the Selenga River basin in 2001-2010. In the southwestern mountain regions (the Dzhida River basin) the river runoff increased during that period.  相似文献   

11.
利用博斯腾湖流域开都河、黄水沟和清水河的出山口水文站月径流量和气象站月平均数据,开展变化特征分析和径流变化对气候因子的响应研究。结果表明,博斯腾湖流域年际气候变化以气温上升为主,降水量增加趋势不显著;域内主要河流径流量持续上升。突变检验发现,三条入湖河流90年代之前径流量增加主要是域内降水量增加的结果,随后受气温上升导致冰雪消融加快也对径流量的增加有贡献。相关分析结果显示,博斯腾湖三条入湖河流年径流量变化主要受4月和7月降水因子影响。此外,开都河的径流变化还表现出对8月气温和降水的显著响应,同时开都河流域集水区冰川的面积和占比均大于黄水沟和清水河流域,这表明冰川融水补给对开都河径流的影响大于黄水沟和清水河。所建立的气候因子-径流量多元线性回归模型,能够很好的模拟开都河、黄水沟和清水河的径流变化过程,证明了博斯腾湖流域水文变化受气候因子的显著影响。  相似文献   

12.
A parametric crop water use and yield model was applied to a transect spanning the North American Great Plains to investigate the evapotranspiration demand on grain corn and the associated irrigation water applications needed for optimal crop production. The transect consisted of four sample stations, covering 25 degrees of latitude. 124 climate change scenarios for each of the transect stations, were created by systematically changing air temperature, precipitation, and incident solar radiation in terms of positive and negative departures from the normal, long-term record. This paper reports how grain corn evapotranspiration and irrigation water amounts would respond to climatic changes inherent in the scenarios if there were no changes in agricultural technology. Among the results, the seasonal response of evapotranspiration (ET) totals to air temperature perturbations was greatest in the higher latitudes and least in the lower latitudes. This impact of changing temperature was also greatest under sunny compared with cloudy conditions, and for fully irrigated in contrast to rainfed conditions. Changes in precipitation amounts caused greatest responses in rainfed fields under sunny conditions. The middle latitudes (e.g., Kansas City) were most sensitive. Perturbing solar radiation caused greatest evapotranspiration changes with irrigated conditions particularly in the middle latitudes. Percentage changes in solar radiation (or cloudiness) were of considerably greater importance than comparable precipitation changes. In the absence of temperature perturbations, the relative precipitation and solar radiation changes caused similar trends in amount of irrigation water applied. For temperature changes, the resultant irrigation watering responses were largely non-linear. A consecutive paper will report on the response of maize yield to the introduced climatic changes and associated irrigation schedules.Dr. Liverman was also affiliated with the National Center for Atmospheric Research, which is sponsored by the National Science Foundation. She is currently at the Department of Geography, University of Wiscon, Madison, WI.P. A. O'Rourke and P. E. Todhunter. Dr. O'Rourke is a Visiting Scholar at UCLA from Litton System, Inc., Data Systems Division.  相似文献   

13.
Future climate changes, as well as differences in climates from one location to another, may involve changes in climatic variability as well as changes in means. In this study, a synthetic weather generator is used to systematically change the within-year variability of temperature and precipitation (and therefore also the interannual variability), without altering long-term mean values. For precipitation, both the magnitude and the qualitative nature of the variability are manipulated. The synthetic daily weather series serve as input to four crop simulation models. Crop growth is simulated for two locations and three soil types. Results indicate that average predicted yield decreases with increasing temperature variability where growing-season temperatures are below the optimum specified in the crop model for photosynethsis or biomass accumulation. However, increasing within-year variability of temperature has little impact on year-to-year variability of yield. The influence of changed precipitation variability on yield was mediated by the nature of the soil. The response on a droughtier soil was greatest when precipitation amounts were altered while keeping occurrence patterns unchanged. When increasing variability of precipitation was achieved through fewer but larger rain events, average yield on a soil with a large plant-available water capacity was more affected. This second difference is attributed to the manner in which plant water uptake is simulated. Failure to account for within-season changes in temperature and precipitation variability may cause serious errors in predicting crop-yield responses to future climate change when air temperatures deviate from crop optima and when soil water is likely to be depleted at depth.  相似文献   

14.
1961-2005年嫩江流域右岸气候变化及对水资源的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
利用累积距平法和气候倾向率对1961-2005年嫩江流域右岸气温、降水量和径流量资料进行分析,研究嫩江流域右岸气候变化及其对水资源的影响。结果表明:近45 a来嫩江流域右岸气温显著增高,平均以0.52 ℃/10 a的速率上升,而且四季均为上升趋势, 不同季节增温幅度以冬、春、秋、夏季依次递减,1986年以来为气温升高最显著的时段;降水变化可分为3个阶段: 1961-1982年降水量呈减少趋势,1982-1998年处于增加时期,1998年以来降水量又呈现减少趋势。夏季降水量变化趋势与年降水量变化趋势趋于一致, 降水量总趋势是在波动中微弱上升;嫩江流域右岸主要控制站年径流量与年降水量保持同步变化。  相似文献   

15.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

16.
To project potential habitat changes of 57 fish species under global warming, their suitable thermal habitat at 764 stream gaging stations in the contiguous United States was studied. Global warming was specified by air temperature increases projected by the Canadian Centre of Climate Modelling General Circulation Model for a doubling of atmospheric CO2. The aquatic thermal regime at each gaging station was related to air temperature using a nonlinear stream temperature/air temperature relationship.Suitable fish thermal habitat was assumed to be constrained by both maximum temperature and minimum temperature tolerances. For cold water fishes with a 0 °C lower temperature constraint, the number of stations with suitable thermal habitat under a 2×CO2 climate scenario is projected to decrease by 36%, and for cool water fishes by 15%. These changes are associated with a northward shift of the range. For warm water fishes with a 2 °C lower temperature constraint, the potential number of stations with suitable thermal habitat is projected to increase by 31%.  相似文献   

17.
Summary The effectiveness of crop residues to protect the soil surface and reduce soil erosion decreases as residues decompose. The rate of residue decomposition is directly related to the temperature and moisture regimes of the residues. Predicting changes in residue mass, orientation, and soil cover requires the use of functions that relate changes in decomposition rates to changes in the temperature and water regimes. Temperature and water functions used in the residue decomposition submodel of the Wind Erosion Prediction System (WEPS) were evaluated for their effects on predictions of residue decomposition. A precipitation function (PC) was found to produce relatively more accurate estimates of decomposition than a near surface soil water content function (SWC) for describing water regime effects. The estimated accuracies of the two functions were similar when bias in the estimation was considered. Predictions made with PC had estimated accuracies of ± 11.4, 14.5, 13.5% for alfalfa, sorghum and wheat, respectively, while those made with SWC had estimated accuracies of ± 13.8, 16.2, and 16.9%, respectively. Three temperature functions were compared for use in predicting residue decomposition over a range of locations and crops. There was little difference between the temperature functions over all the locations but, for several locations, one function overpredicted decomposition more often than the other two functions. Accuracies ranged from ±4 to ±51% of the observed values. The highest values were obtained at one location, and all three temperature functions produced similar high values. Over most of the data, estimated accuracies were generally between ± 15 and ± 25%. The prediction intervals were similar to those observed for decomposition of surface-placed residues. This evaluation indicates that the temperature and water functions used in the WEPS decomposition submodel will give reasonable estimates of mass loss from surface residues using easy-to-obtain weather data.With 8 Figures  相似文献   

18.
Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai??i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at M??kaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2?h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather data generation and disaggregation methods were concentrated in a few Hawaiian watersheds, the results presented can be used to similar mountainous location settings, as well as any specific locations aimed at furthering the site-specific performance evaluation of these tested models.  相似文献   

19.
Possible relationships are studied between changes in major climate parameters (air and soil surface temperature, precipitation, and specific and relative humidity) and in regime characteristics of snow cover (duration of occurrence of snow cover and of stable snow cover, dates of their appearance and disappearance), with emphasis on Georgia.  相似文献   

20.
A global monthly climatology of soil moisture and water balance   总被引:4,自引:0,他引:4  
Global monthly climatology of available soil moisture content is derived on a 4° by 5° grid from observed precipitation and air surface temperature by use of a simple water budget model. The governing equations and methods of calculation for deriving these fields, which follow the formulation of Thornthwaite, are first described and the importance of the various assumptions and simplifications of this approach are discussed. The derived global fields are then presented. A comparison of some of the derived fields with other calculations is also made in order to permit an evaluation of the results: For example, our indirect estimate of the river run-off is generally in good agreement with more direct estimates, except for high latitude regions where the freezing of the soil may play an important role.Yale Mintz died on 27 April 1991. This work was carried out jointly over a number of years preceding his death  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号