首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 776 毫秒
1.
Operation of a previously existing sampling network during the 1976 drought has provided an opportunity to assess the effects of the drought and subsequent autumn rainfall on the water quality characteristics of a small catchment (9·3 km3) in East Devon. The availability of records for past years has enabled these data to be compared with longer-term response characteristics. Analysis indicates that the 1976 drought produced a unique solute response, with levels rising markedly during the autumn flush which resulted from the heavy rainfall following the drought period. Concentrations of several ions increased 3–4 times and NO3-N levels exhibited even greater increases of up to 50-fold. Some of the factors responsible for these increases and some implications are considered.  相似文献   

2.
Steven M. Wondzell 《水文研究》2011,25(22):3525-3532
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time (or among streams) that a consistent relationship should not be expected? Or, is the hyporheic zone less important in stream ecosystems than is commonly expected? These questions were examined using data from existing groundwater modelling studies of hyporheic exchange flow at five sites in a fifth‐order, mountainous stream network. The size of exchange flows, relative to stream discharge (QHEF:Q), was large only in very small streams at low discharge (area ≈ 100 ha; Q < 10 l/s). At higher flows (flow exceedance probability > 0·7) and in all larger streams, QHEF:Q was small. These data show that biogeochemical processes in the hyporheic zone of small streams can substantially influence the stream's solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers. The hyporheic zone may influence stream ecosystems in many ways, however, not just through biogeochemical processes that alter stream solute loads. For example, the hyporheic zone represents a unique habitat for some organisms, with patterns and amounts of upwelling and downwelling water determining the underlying physiochemical environment of the hyporheic zone. Similarly, hyporheic exchange creates distinct patches of downwelling and upwelling. Upwelling environments are of special interest, because upwelling water has the potential to be thermally or chemically distinct from stream water. Consequently, micro‐environmental patches created by hyporheic exchange flows are likely to be important to biological and ecosystem processes, even if their impact on stream solute loads is small. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

3.
The salinity of Lake Kinneret, Israel, is significantly higher than the salinity of the water from surface streams that flow to the lake. The relatively high salinity is a result of the activity of saline springs located at the bottom of the lake.The purpose of this work is to establish a general model for the salinization mechanism of Lake Kinneret. The model is based on the main components of the annual water and solute balance. Changes in time of the solute mass of the lake were described as a differential equation of a linear reservoir on an annual time scale. The model assumes that under any long-term operation policy of the lake, the components of the annual solute and water balance stay nearly constant in time.The model was tested for both steady-state conditions, and during changes in time, against measured lake salinity over the years 1968-2000. It was found that the major changes of lake salinity throughout the years were described well, despite the variety of rainfall amounts. Predictions of the expected lake salinity changes were proposed for the cases of controlled increase or decrease of saline springs discharge to the lake; for the changes of water quantity allowed to flow into or pumped out of the lake; and for various initial salinities. Predictions agree well with previous predictions made by statistical models.  相似文献   

4.
Abstract

The chemistry of streamwater, bulk precipitation, throughfall and soil waters has been studied for three years in two plantation forest and two moorland catchments in mid-Wales. Na and CI are the major ions in streamwater reflecting the maritime influence on atmospheric inputs. In all streams, baseflow is characterised by high pH waters enriched in Ca, Mg, Si and HCO3. Differences in baseflow chemistry between streams reflect the varying extent of calcite and base metal sulphide mineralization within the catchments. Except for K, mean stream solute concentrations are higher in the unmineralized and mineralized forest catchments compared with their respective grassland counterparts. In the forest streams, storm flow concentrations of H+ are approximately 1.5 times and Al four times higher than in the moorland streams. Annual catchment losses of Na, Cl, SO4, NO3, Al and Si are greatest in the forest streams. In both grassland and forest systems, variations in stream chemistry be explained by mixing waters from different parts of the catchment, although NO3 concentrations may additionally be controlled by N transformations occurring between soils and streams. Differences in stream chemistry and solute budgets between forest and moorland catchments are related to greater atmospheric scavenging by the trees and changes in catchment hydrology consequent on afforestation. Mineral veins within the catchment bedrock can significantly modify the stream chemical response to afforestation.  相似文献   

5.
The 2012–2015 drought in north-central coastal California ranks among the three most prolonged periods of below-median annual rainfall in the past 65 years. In three critical coho salmon streams, summer baseflow was less each additional dry year; streams with summer flow early in the drought had no flow for more than two months in latter years. By the third dry year, summer discharge was 1–5% of recent wet-type years, and 10–20% of the first dry year. Multiannual drought also caused increased dry channel conditions: the percentage of flowing channel reduced from 28 to 55% from the first to the third dry years among three study streams. In the first year following drought, dry-season streamflow resembled early to-mid-drought conditions, while in the second, it approached pre-drought discharge. This multiannual drought foreshadows how multi-annual drought predicted under future climate scenarios may affect critical salmonid streams later this century.  相似文献   

6.
Josep Pi  ol  Anna   vila  Ferran Rod 《Journal of Hydrology》1992,140(1-4):119-141
Streamwater chemistry is described for three streams draining undisturbed, evergreen broad-leaved forested catchments on phyllites in NE Spain: two streams with no or negligible flow in summer are located in the Prades massif, and one perennial stream is in the wetter Montseny mountains. Weekly data for a study period of 2–4 years are provided to (1) describe the seasonal variations in streamwater chemistry, (2) analyse the relationship between stream discharge and solute concentrations using a two-component mixing model and (3) search for patterns of temporal variation in stream solute concentrations after discounting the effects of discharge. At Prades, concentrations of all analysed ions, except NO3, showed marked seasonal variations in stream water, whereas at Montseny only ions related to mineral weathering (HCO3, Na+, Ca2+ and Mg2+) showed strong seasonality. Ion concentrations were more closely dependent on instantaneous discharge at Montseny than at Prades. The residuals of the relationship between solute concentrations and discharge retained a strong seasonality at Prades, but not at Montseny. These differences are related to the major hydrochemical processes that determine the streamwater chemistry at each site. The same processes are probably operative in the three catchments, but are of varying relative importance. At Montseny, the mixing of waters of different chemical composition seems to be the major process controlling streamwater chemistry, although the soilwater end-member composition predicted by the mixing model applied did not match the measured soilwater chemistry. In the drier Prades catchments, the two major hydrochemical processes determining the seasonal variation of streamwater chemistry are (1) the restart of flow after the summer drought, which flushes out the solutes accumulated during the dry period, and (2) the seasonal changes in groundwater chemistry that result from the interplay of water residence time, temperature and CO2 partial pressure. In Mediterranean catchments with relatively high precipitation, such as Montseny, the seasonal variation in the streamwater chemistry is largely determined by the same processes as at humid-temperate sites, whereas in drier Mediterranean catchments, such as Prades, the major hydrochemical processes are clearly distinct.  相似文献   

7.
A new modeling approach for solute transport in streams and canals was developed to simulate solute dissolution, transport, and decay with continuously migrating sources. The new approach can efficiently handle complicated solute source feeding schemes and initial conditions. Incorporating the finite volume method (FVM) and the ULTIMATE QUICKEST numerical scheme, the new approach is capable of predicting fate and transport of solute that is added to small streams or canals, typically in a continuous fashion. The approach was tested successfully using a hypothetical case, and then applied to an actual field experiment, where linear anionic polyacrylamide (LA-PAM) was applied to an earthen canal. The field experiment was simulated first as a fixed boundary problem using measured concentration data as the boundary condition to test model parameters and sensitivities. The approach was then applied to a moving boundary problem, which included subsequent LA-PAM dissolution, settling to the canal bottom and transport with the flowing canal water. Simulation results showed that the modeling approach developed in this study performed satisfactorily and can be used to simulate a variety of transport problems in streams and canals.  相似文献   

8.
Hydrology and solute concentrations of two intermittent Mediterranean streams draining two nested catchments were compared. The two catchments were mainly underlain by granitic rocks and different types of sericitic schists. Only the lowland catchment had an alluvial zone and a well‐developed riparian forest. The rainfall–runoff relationship and the correlation between daily flow concentrations showed that hydrological behaviour was similar at both sites during most of the year. However, reverse fluxes were detected during the wetting and drying up periods only in the stream with an alluvial zone. The intermittence in stream flow also had effects on absolute solute concentrations, temporal solute dynamics and streamwater stoichiometry. Streamwater chemistry was not affected by drainage area, except for cations produced mainly by bedrock dissolution (i.e. calcium and magnesium) that increased with increasing catchment size. Differences in the relationship among cations and anions were detected between the two streams, which could be attributed to biogeochemical processes occurring in the alluvial zone. The multivariate model used in this study showed that stoichiometry was more useful than absolute concentrations when analyzing the influence of different lithologies on streamwater chemistry. Such differences were amplified in autumn, likely due to a low hydrological connectivity between the two nested catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The structure and function of agricultural stream reaches with sparse riparian and floodplain vegetation differ from those of forested reaches, but may be ‘reset’ as these streams flow through reaches with forested riparian zones. We investigated whether invertebrate colonisation of River Red Gum (Eucalyptus camaldulensis) leaf packs in lowland intermittent streams was influenced by the adjacent reach-scale landuse (cleared farmland or forested reserve) within an agricultural catchment in Victoria, Australia. Further, we examined the influence of seasonal changes in hydrology and associated changes in abiotic conditions on the colonisation of leaves by repeating experiments over two summers and one spring. Across these experiments, there were no consistent differences in the structure of communities that colonised leaves in farmland and reserve reaches. In both seasons, most leaf colonists were collectors and few were shredders in both farmland and reserve reaches. Relative abundances of gastropod grazers were much higher in summer than in spring. The structure of invertebrate communities colonising leaves in the different reaches converged over time when streams flowed in spring, but diverged over time as the streams dried and abiotic conditions within disconnected pools became increasingly harsh in summer. Thus, patterns of leaf pack colonisation were influenced by the regional climate causing large seasonal changes in hydrology, but not by reach-scale landuse. The large-scale disturbances of agricultural landuse across the catchment and a supra-seasonal drought probably contributed to low diversities of invertebrate communities in the streams.  相似文献   

10.
Solute and runoff fluxes from two adjacent alpine streams (one glacial and one non‐glacial) were investigated to determine how the inorganic solute chemistry of runoff responded to seasonal and interannual changes in runoff sources and volume, and to differences in physical catchment properties. Intercatchment differences in solute composition were primarily controlled by differences in catchment geology and the presence of soils, whereas differences in total solute fluxes were largely dependent on specific discharge. The glacial stream catchment had higher chemical denudation rates due to the high rates of flushing (higher specific discharge). The non‐glacial Bow River had higher overall concentrations of solutes despite the greater prevalence of more resistant lithologies in this catchment. This is likely the result of both longer average water–rock contact times, and a greater supply of protons from organic soils and/or pyrite oxidation. Increases in snowpack depth/snowmelt runoff reduced the retention of nitrate in the Bow River catchment (i.e. increased nitrate export), probably by reducing net biological uptake, or by reducing the proportion of runoff that had contact with biologically active soil horizons that tend to remove nitrate. The two streams exhibited opposite solute flux responses to climate perturbations over three melt seasons (1998, 1999, and 2000). The 1998 El Niño event resulted in an unusually thin winter snowpack, and increased runoff and solute fluxes from the glacial catchment, but decreased fluxes from the Bow River catchment. Solute fluxes in the Bow River increased proportionally to discharge, indicating that increased snowmelt runoff in this catchment resulted in a proportional increase in weathering rates. In contrast, the proportional variation in solute flux in the glacial stream was only ∼70–80% of the variation in water flux. This suggests that increased ablation of glacier ice and the development of subglacial channels during the 1998 El Niño year apparently reduced the average water–rock contact time in the glacial catchment relative to seasons when the subglacial drainage system was primarily distributed in character. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Unlike temperate and polythermal proglacial streams, the proglacial streams in Taylor Valley (TV), Antarctica, are derived primarily from glacier surface melt with no subglacial or groundwater additions. Solute responses to flow reflect only the interaction of glacial meltwater with the valley floor surrounding the stream channel. We have investigated the major, minor and trace element 24‐h variations of two proglacial melt streams, Andersen Creek and Canada Stream, originating from the Canada Glacier in TV, Antarctica. Both streams exhibited diel mid‐austral summer diurnal flow variation, with maximum flow being more than 50 times the minimum flow. Dissolved (< 0.4 µm) major, minor and trace solute behaviors through diel periods were strongly controlled by the availability of readily solubilized material on the valley floor and hyporheic‐biological exchanges. Anderson Creek had generally greater solute concentrations than Canada Stream because of its greater receipt of eolian sediment. Andersen Creek also acquired greater solute concentrations in the rising limb of the hydrograph than the falling limb because of dissolution of eolian material at the surface of the stream channel coupled with minimal hyporheic‐biological exchange. Conversely, Canada Stream had less available eolian sediment, but a greater hyporheic‐biological exchange, which preferentially removed trace and major solutes in the rising limb and released them in the falling limb. Given the dynamic nature of discharge, eolian, and hyporheic‐biological processes, solute loads in TV streams are difficult to predict. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Variations in the mouth areas of the Yenisei and Pur rivers over the period of 50 years were revealed on the basis of comparison of topographic maps prepared in the 1950s and space images made from the Landsat satellite in 1973 (MSS System) and 1999, 2000 (ETM System). Maps of the drainage network dynamics were compiled; they show that, over a period of many years, mouth areas of northern rivers undergo slow but steady changes, which are indicative of the continuing protrusion of deltas into bays at a rate up to 20 m/year, the increment in mouth areas reaching 0.05–0.07% a year. As noted, secondary water streams die off under the condition of flow concentration in main branches, and small islands get integrated. It was found that, over the period under study, natural variations in the level of the receiving water body and human-induced changes in river basins (construction of a chain of reservoirs) did not have considerable impact on dynamic processes occurring in deltas.  相似文献   

13.
Recent studies have focused on the relationship between solute concentrations and discharge in streams, demonstrating that concentrations can vary little relative to changes in discharge (chemostatic behaviour). Chemostatic behaviour is dependent on catchment characteristics (e.g., lithology, geomorphology, and vegetation) and chemical characteristics of the solute (e.g., availability, reactivity, and mobility). An investigation of 3 springs and a stream near Los Alamos, NM, reveals that springs can behave in a chemostatic fashion as stream systems tend to do. Another unique finding of this study is that the anthropogenic contaminants barium and the high explosive RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine) can also behave chemostatically. The chemostatic behaviour of a contaminant has important implications for the residence time of contaminants in a system as well as having a major control on contaminant flux and mass transport. Redox (reduction–oxidation) and biogeochemically sensitive analytes (e.g., Fe, SO4, and NO3) display a combination of chemostatic and chemodynamic behaviour, showing the influence of temporally variable conditions on stream and spring chemistries.  相似文献   

14.
Wastewater treatment plants are major point-sources of nutrients to streams globally, but the impact on receiving streams is not always clear. Previous research has shown mixed responses in receiving streams, with some showing no net retention through in-stream processing for large distances below plants and some showing high rates of processing and retention. This study focuses on Sandy Run, a small, suburban stream in Montgomery County, PA, that receives effluent from two plants, where effluent makes up an estimated 50% of outlet discharge at baseflow. Two sites were monitored in late summer baseflow using high-temporal loggers to evaluate nitrate and phosphate retention with distance below the plants. Effluent quantity was monitored immediately below the effluent outfalls using specific conductivity as a conservative signal of solute fluctuations throughout the day. A site 1 km downstream showed diel nitrate changes, but despite moderate gross primary productivity and ecosystem respiration rates, there was little net retention of nutrients and the diel nitrate signal can be attributed to advection and dispersion of variable upstream effluent. A site 5.4 km below the plant showed a diel nitrate signal as well, but baseflow daily hysteresis plots of nitrate and specific conductivity showed the effluent and nitrate peaks did not coincide. Instead, the effluent input signal was seen overnight, but there was in-stream removal and release processes during the day. Over the distance to this site, the stream was metabolizing some of the high nutrient loads, although gross primary productivity and ecosystem respiration rates were lower. It is important to understand subdaily changes in nutrient processing to fully quantify the impacts of effluent on small streams at different scales. Furthermore, looking at the diel signal without considering conservative transport would overestimate in-stream processing.  相似文献   

15.
Hydrological and hydrochemical processes in the critical zone of karst environments are controlled by the fracture‐conduit network. Modelling hydrological and hydrochemical dynamics in such heterogeneous hydrogeological settings remains a research challenge. In this study, water and solute transport in the dual flow system of the karst critical zone were investigated in a 73.5‐km2 catchment in southwest China. We developed a dual reservoir conceptual run‐off model combined with an autoregressive and moving average model with algorithms to assess dissolution rates in the “fast flow” and “slow flow” systems. This model was applied to 3 catchments with typical karst critical zone architectures, to show how flow exchange between fracture and conduit networks changes in relation to catchment storage dynamics. The flux of bidirectional water and solute exchange between the fissure and conduit system increases from the headwaters to the outfall due to the large area of the developed conduits and low hydraulic gradient in the lower catchment. Rainfall amounts have a significant influence on partitioning the relative proportions of flow and solutes derived from different sources reaching the underground outlet. The effect of rainfall on catchment function is modulated by the structure of the karst critical zone (e.g., epikarst and sinkholes). Thin epikarst and well‐developed sinkholes in the headwaters divert more surface water (younger water) into the underground channel network, leading to a higher fraction of rainfall recharge into the fast flow system and total outflow. Also, the contribution of carbonate weathering to mass export is also higher in the headwaters due to the infiltration of younger water with low solute concentrations through sinkholes.  相似文献   

16.
Climate change, combined with industrial growth and increasing demand, could result in serious future water shortages and related water quality and temperature issues, especially for upland and humid areas. The extreme 2018 drought that prevailed throughout Europe provided an opportunity to investigate conditions likely to become more frequent in the future. For an upland rural catchment utilised by the distilling industry in North-East Scotland, a tracer-based survey combined discharge, electrical conductivity, stable water isotopes and temperature measurements to understand the impacts of drought on dominant stream water and industry water sources, both in terms of water quantity and quality (temperature). Results showed that water types (groundwater, ephemeral stream water, perennial stream water and water from small dams) were spatially distinct and varied more in space than time. With regards to the drought conditions we found that streams were largely maintained by groundwater during low flows. This also buffered stream water temperatures. Water types with high young water fractions were less resilient, resulting in streams with an ephemeral nature. Although our results demonstrated the importance of groundwater for drought resilience, water balance data revealed these storage reserves were being depleted and only recovered towards the end of the following year because of above average rainfall in 2019. Increased storage depletion under continued trends of extreme drought and water abstraction could be addressed via informed (nature based) management strategies which focus on increasing recharge. This may improve resilience to droughts as well as floods, but site specific testing and modelling are required to understand their potential. Results could have implications for management of water volumes and temperature, particularly for the sustainability of an historic industry, balancing requirements of rural communities and the environment.  相似文献   

17.
To effectively manage hydrological drought, there is an urgent need to better understand and evaluate its human drivers. Using the “downstreamness” concept, we assess the role of a reservoir network in the emergence and evolution of droughts in a river basin in Brazil. In our case study, the downstreamness concept shows the effect of a network of reservoirs on the spatial distribution of stored surface water volumes over time. We demonstrate that, as a consequence of meteorological drought and recovery, the distribution of stored volumes became spatially skewed towards upstream locations, which affected the duration and magnitude of hydrological drought both upstream (where drought was alleviated) and downstream (where drought was aggravated). The downstreamness concept thus appears to be a useful entry point for spatiotemporally explicit assessments of hydrological drought and for determining the likelihood of progression from meteorological drought to a human-modified hydrological drought in a basin.  相似文献   

18.
The effect of channel size on residence time distributions (RTDs) of solute in rivers is investigated in this paper using tracer test data and the variable residence time (VART) model. Specifically, the investigation focuses on the influence of shear dispersion and hyporheic exchange on the shape of solute RTD, and how these two transport processes prevail in larger and smaller streams, respectively, leading to distinct tails of RTD. Simulation results show that (1) RTDs are dispersion-dependent and thereby channel-size (scale) dependent. RTDs increasing longitudinal dispersion coefficient. Small streams with negligible dispersion coefficient may display various types of RTD from upward curving patterns to a straight line (power-law distributions) and further to downward curving lognormal distributions when plotted in log–log coordinates. Moderate-sized rivers are transitional in terms of RTDs and commonly exhibit lognormal and power-law RTDs; (2) the incorporation of water and solute losses/gains in the VART model can improve simulation results and make parameter values more reasonable; (3) the ratio of time to peak concentration to the minimum mean residence time is equal to the recovery ratio of tracer. The relation provides a simple method for determining the minimum mean residence time; and (4) the VART model is able to reproduce various RTDs observed in rivers with 3–4 fitting parameters while no user-specified RTD functions are needed.  相似文献   

19.
ABSTRACT

To effectively manage hydrological drought, there is an urgent need to better understand and evaluate its human drivers. Using the “downstreamness” concept, we assess the role of a reservoir network in the emergence and evolution of droughts in a river basin in Brazil. In our case study, the downstreamness concept shows the effect of a network of reservoirs on the spatial distribution of stored surface water volumes over time. We demonstrate that, as a consequence of meteorological drought and recovery, the distribution of stored volumes became spatially skewed towards upstream locations, which affected the duration and magnitude of hydrological drought both upstream (where drought was alleviated) and downstream (where drought was aggravated). The downstreamness concept thus appears to be a useful entry point for spatiotemporally explicit assessments of hydrological drought and for determining the likelihood of progression from meteorological drought to a human-modified hydrological drought in a basin.  相似文献   

20.
Monitoring the temporal variation of solute concentrations in streams at high temporal frequency can play an important role in understanding the hydrological and biogeochemical behaviour of catchments. UV–visible spectrometry is a relatively inexpensive and easily used tool to infer those concentrations in streams at high temporal resolution. However, it is not yet clear which solutes can be modelled with such an in-situ sensor. Here, we installed a UV–visible spectrometer probe (200–750 nm) in a high-altitude tropical Páramo stream to record the wavelength absorbance at a 5-min temporal resolution. For calibration, we simultaneously sampled stream water at a 4-h frequency from February 2018 to March 2019 for subsequent laboratory analysis. Absorbance spectra and laboratory-determined solute concentrations were used to identify the best calibration method and to determine which solute concentrations can be effectively inferred using in situ spectrometry through the evaluation of six calibration methods of different mathematical complexity. Based on the Nash – Sutcliffe efficiency (NSE) and Akaike information criterion metrics, our results suggest that multivariate methods always outperformed simpler strategies to infer solute concentrations. Eleven out of 21 studied solutes (Al, DOC, Ca, Cu, K, Mg, N, Na, Rb, Si and Sr) were successfully calibrated (NSE >0.50) and could be inferred using UV–visible spectrometry even with a reduced daily sampling frequency. It is worth noting that most calibrated solutes were correlated with wavelengths (WLs) in the low range of the spectra (i.e., UV range) and showed relatively good correlation with DOC. The latter suggests that estimation of metal concentrations could be possible in other streams with a high organic load (e.g., peat dominated catchments). In situ operation of spectrometers to monitor water quality parameters at high temporal frequency (sub-hourly) can enhance the protection of human water supplies and aquatic ecosystems as well as providing information for assessing catchment hydrological functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号