首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Talc is one of the weakest minerals that is associated with fault zones. Triaxial friction experiments conducted on water-saturated talc gouge at room temperature yield values of the coefficient of friction, μ (shear stress, τ/effective normal stress, σ′N) in the range 0.16–0.23, and μ increases with increasing σ′N. Talc gouge heated to temperatures of 100°–400 °C is consistently weaker than at room temperature, and μ < 0.1 at slow strain rates in some heated experiments. Talc also is characterized by inherently stable, velocity-strengthening behavior (strength increases with increasing shear rate) at all conditions tested. The low strength of talc is a consequence of its layered crystal structure and, in particular, its very weak interlayer bond. Its hydrophobic character may be responsible for the relatively small increase in μ with increasing σ′N at room temperature compared to other sheet silicates.Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.  相似文献   

11.
12.
Lower temperature eclogite (with T = 600 °C) represents a significant part of the occurrences of eclogite in orogenic belts. ‘True’ eclogite, with, for example, garnet + omphacite >70%, is well represented in such an occurrence. Calculated phase equilibria in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO), for just one rock composition – that of a representative mid‐ocean ridge basalt, morb – are used to see under what circumstances ‘true’ eclogite is predicted to occur. The variables considered are not only pressure (P) and temperature (T) but also water content and oxidation state. The latter two variables are known to exert a significant control on mineral assemblage but are difficult to establish retrospectively from the observed rocks themselves. It is found that whereas oxidation state does have a strong effect on mineral assemblage, the key control on developing ‘true’ eclogite is shown to be temperature and water content. If temperature is established to be <600 °C, water content has to be low (less or much less than that for H2O saturation) in order for ‘true’ eclogite to form. Moreover, unless pressure is at the high end in the range considered, lawsonite eclogite and ‘true’ eclogite will tend to be mutually exclusive, with the former requiring high water content at the lower temperature where it occurs, but the latter requiring low water content.  相似文献   

13.
14.
15.
16.
17.
A fully thermodynamic model for mafic melt in CaO–MgO–Al2O3–SiO2 (CMAS) has been calibrated, for calculation of melting equilibria in the pressure range 0–50 kbar. It is intended as a preliminary step towards a large‐system melt model, suitable for exploring melting, melt loss and crystallization processes in a wide range of natural rock compositions. Calibration was performed with attention to the model's behaviour in its compositional subsystems, as a rigorous test of model structure and parameterization. The model is consistent with the latest Holland & Powell thermodynamic data set, and can therefore be used to calculate phase relations in conjunction with the many solid‐phase activity–composition models written for the data set. Model calculations successfully reproduce experimental melting reactions in CMAS spinel lherzolite and garnet lherzolite assemblages, as well as sapphirine‐ and kyanite‐bearing assemblages, at moderate to high pressure. Thermodynamically sensitive features, such as thermal divides are also recovered. However, some changes to the model structure will be required before the model can describe the full range of mafic and ultramafic melt compositions known from experiment at low pressures.  相似文献   

18.
19.
We present, as a progress report, a revised and much enlarged version of the thermodynamic dataset given earlier (Holland & Powell, 1985). This new set includes data for 123 mineral and fluid end-members made consistent with over 200 P–T–XCO2fO2 phase equilibrium experiments. Several improvements and advances have been made, in addition to the increased coverage of mineral phases: the data are now presented in three groups ranked according to reliability; a large number of iron-bearing phases has been included through experimental and, in some cases, natural Fe:Mg partitioning data; H2O and CO2 contents of cordierites are accounted for with the solution model of Kurepin (1985); simple Landau theory is used to model lambda anomalies in heat capacity and the Al/Si order–disorder behaviour in some silicates, and Tschermak-substituted end-members have been derived for iron and magnesium end-members of chlorite, talc, muscovite, biotite, pyroxene and amphibole. For the subset of data which overlap those of Berman (1988), it is encouraging to find both (1) very substantial agreement between the two sets of thermodynamic data and (2) that the two sets reproduce the phase equilibrium experimental brackets to a very similar degree of accuracy. The main differences in the two datasets involve size (123 as compared to 67 end-members), the methods used in data reduction (least squares as compared to linear programming), and the provision for estimation of uncertainties with this dataset. For calculations on mineral assemblages in rocks, we aim to maximize the information available from the dataset, by combining the equilibria from all the reactions which can be written between the end-members in the minerals. For phase diagram calculations, we calculate the compositions of complex solid solutions (together with P and T) involved in invariant, univariant and divariant assemblages. Moreover we strongly believe in attempting to assess the probable uncertainties in calculated equilibria and hence provide a framework for performing simple error propagation in all calculations in thermocalc, the computer program we offer for an effective use of the dataset and the calculation methods we advocate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号