首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active growth of a fault-and-thrust belt in frontal zones of Himalaya is a prominent topographical feature, extending 2500 km from Assam to Pakistan. In this paper, kinematical analysis of frontal anticlines and spatial mapping of active faults based on geomorphological features such as drainage pattern development, fault scarps and uplifted Quaternary alluvial fans are presented. We analyse the geomorphic and hydrographic expressions of the Chandigarh and the Janauri active anticlines in the NW India Siwaliks. To investigate the morphological scenario during the folding process, we used spatial imagery, geomorphometric parameters extracted from digital elevation models and fieldwork. Folding between the Beas and Sutlej Rivers gives clear geomorphological evidence of recent fold growth, presumably driven by movements of blind thrust faults. Structural style within the Janauri and Chandigarh anticlines is highly variable (fault-propagation folds, pop-up structures and transfer faults). The approach presented here involves analysis of topography and drainage incision of selected landforms to detect growth of active anticlines and transfer faults. Landforms that indicate active folding above a southwest-dipping frontal thrust and a northeast-dipping back-thrust are described. Along-strike differences in ridge morphology are measured to describe the interaction of river channel patterns with folds and thrust faults and to define history of anticline growth. The evolution of the apparently continuous Janauri ridge has occurred by the coalescence of independent segments growing towards each other. By contrast, systematic drainage basin asymmetry shows that the Chandigarh anticline ridge has propagated laterally from NW to SE.  相似文献   

2.
F. Gutirrez 《Geomorphology》2004,57(3-4):423-435
The salt valleys over the axis of the salt-cored anticlines in the Paradox fold and fault belt (Canyonlands, Utah and Colorado) are created by subsidence of the anticline crests. Traditionally, the collapse of the anticlinal crests was attributed to dissolution of the salt walls (diapirs) forming the anticline cores. Recent studies based on scaled physical models and field observations propose that the salt valleys are a result of regional extension and that salt dissolution had only a minor influence in the development of the axial depressions. This paper presents several arguments and lines of evidence that refute the tectonic model and support the salt dissolution subsidence interpretation.The development of contractional structures in salt dissolution experiments led the advocates of the tectonic interpretation to reject the dissolution-induced subsidence explanation. However, these salt dissolution models do not reproduce the karstification of salt walls in a realistic way, since their analog involves removal of salt from the base of the diapirs during the experiments. Additionally, numerous field examples and laboratory models conducted by other authors indicate that brittle subsidence in karst settings is commonly controlled by subvertical gravity faults.Field evidence against the regional extension model includes (1) a thick cap rock at the top of the salt walls, (2) the concentration of subsidence deformation structures along the crest of the anticlines (salt walls), (3) deformational structures not consistent with the proposed NNE extension, like crestal synforms and NE–SW grabens, (4) dissolution-induced subsidence structures controlled by ring faulting, revealing deep-seated dissolution, (5) large blocks foundered several hundred meters into the salt wall, (6) evidence of recent and active dissolution subsidence, and (7) the aseismic nature of the recently active collapse faults. Although underground salt dissolution seems to be the main cause for the generation of the salt valleys, this phenomenon may have been favored by regional extension tectonics that enhance the circulation of groundwater and salt dissolution.  相似文献   

3.
龙门山位于青藏高原东缘,是青藏高原周缘山脉中陡度变化最大的山脉,也是全球气候和构造活动最为强烈的地区之一,因此成为研究构造、气候如何影响山脉地貌演化过程这一科学问题的良好素材。在位于龙门山北段的平通河流域,汶川地震导致该区强烈的隆升、剥蚀作用,对研究该区地貌演化过程具有重要的启示意义。通过对平通河流域基于DEM数据的地形坡度、水系分布、河流发育程度等的分析,并综合研究区构造特征和岩性特征,获得该流域不同区域的地貌演化方向,其中两个区域的地貌演化最为剧烈:1.平通河流域位于北川-映秀断裂和彭灌断裂之间的地区,未来将发生较快的隆升,地貌向高、陡的方向演化,河流下切作用使河谷两岸形成更加陡峭的地形;2.在北川-映秀断裂上盘附近地区,在构造和气候作用下侵蚀、搬运作用强烈,山体将被快速剥蚀削低,但在河谷两岸也会形成更加陡峭的地形。  相似文献   

4.
ABSTRACT This contribution deals with the External Sierras and a part of the foreland Ebro Basin related to the southern Pyrenean thrust front. The structure of the External Sierras consists of a south‐verging thrust system developed from middle Eocene to early Miocene times. Since the end of the early Oligocene, a regional‐scale detachment anticline (the Santo Domingo anticline) developed, folding the original thrust system and creating new thrust units. The molassic fill in this part of the Ebro Basin (Uncastillo Formation) mainly corresponds to an extensive, composite distributary fluvial system, termed the Luna system, which drained the uplifted Gavarnie Unit to the north. Small, marginal alluvial fans originated along the External Sierras and coalesced in the proximal‐middle portions of the Luna system. Three tecto‐sedimentary units (TSU), late Oligocene to early Miocene in age, comprise the Uncastillo Formation. Lateral relationships and areal distribution of lithofacies through time have been used to establish sedimentary models for the marginal alluvial fans and the Luna fluvial system. Their sedimentary evolution was controlled by tectonics affecting the drainage basins, and based on mapping and stratigraphic relationships of the TSU, the temporal succession of the marginal alluvial fans and their relationships with each thrust system in the south Pyrenean front can be shown. Alluvial fan formation evolved through time from west to east, in accord with the progressive eastward growth of the Santo Domingo anticline as a conical fold. The fluvial network of the Luna system appears to have been mainly radial, but near the basin margin its architecture was influenced by the syndepositional Fuencalderas and Uncastillo anticlines developed within the Ebro Basin. These low‐amplitude folds originated by layer‐parallel shearing caused by rotation of the southern flank of the Santo Domingo anticline. Progressive uplift of these anticlines constrained part of the fluvial discharge to synclinal areas parallel to the basin margin; these areas where characterized by meandering sandy channels. At the peripheral tips of the anticlines the channel system flowed basinward.  相似文献   

5.
In the Solway Firth — Morecambe Bay region of Great Britain there is evidence for heightened hillslope instability during the late Holocene (after 3000 cal. BP). Little or no hillslope geomorphic activity has been identified occurring during the early Holocene, but there is abundant evidence for late Holocene hillslope erosion (gullying) and associated alluvial fan and valley floor deposition. Interpretation of the regional radiocarbon chronology available from organic matter buried beneath alluvial fan units suggests much of this geomorphic activity can be attributed to four phases of more extensive gullying identified after 2500–2200, 1300–1000, 1000–800 and 500 cal. BP. Both climate and human impact models can be evoked to explain the crossing of geomorphic thresholds: and palaeoecological data on climatic change (bog surface wetness) and human impact (pollen), together with archaeological and documentary evidence of landscape history, provide a context for addressing the causes of late Holocene geomorphic instability. High magnitude storm events are the primary agent responsible for gully incision, but neither such events nor cooler/wetter climatic episodes appear to have produced gully systems in the region before 3000 cal. BP. Increased gullying after 2500–2200 cal. BP coincides with population expansion during Iron Age and Romano-British times. The widespread and extensive gullying after 1300–1000 cal. BP and after 1000–800 cal. BP coincides with periods of population expansion and a growing rural economy identified during Norse times, 9–10th centuries AD, and during the Medieval Period, 12–13th centuries AD. These periods were separated by a downturn associated with the ‘harrying of the north’ AD 1069 to 1070. The gullying episode after 500 cal. BP also coincides with increased anthropogenic pressure on the uplands, with population growth and agricultural expansion after AD 1500 following 150 years of malaise caused by livestock and human (the Black Death) plagues, poor harvests and conflicts on the Scottish/English border. The increased susceptibility to erosion of gullies is a response to increased anthropogenic pressure on upland hillslopes during the late Holocene, and the role of this pressure appears crucial in priming hillslopes before subsequent major storm events. In particular, the cycles of expansion and contraction in both population and agriculture appear to have affected the susceptibility of the upland landscape to erosion, and the hillslope gullying record in the region, therefore, contributes to understanding of the timing and spatial pattern of human exploitation of the upland landscape.  相似文献   

6.
太行山中段山地坡面发育模式   总被引:3,自引:0,他引:3  
受地质构造、地层产状和岩性的共同影响,太行山中段山地地貌演化过程中,坡面发育模式产生了明显的分异:以华北准地台的吕梁期不整合面为界,基底层坡面发育以Davis模式为主,沟谷发育为垂直下切,地貌体垂直尺度小于水平尺度,地貌营力以流水为主,坡面侵蚀占主导地位,地表侵蚀强度低山区大于丘陵区,丘陵区大于台地区;盖层坡面发育以Penck模式为主,沟谷发育方式为横向侧切,地貌体垂直尺度远大于水平尺度,地貌营力重力占主导地位,侵蚀方式以崩塌为主。在晚第三纪以来的地貌演化过程中,陡崖平均后退速率为1.35mm/a。  相似文献   

7.
Three successive zones of fault‐related folds disrupt the proximal part of the northern Tian Shan foreland in NW China. A new magnetostratigraphy of the Taxi He section on the north limb of the Tugulu anticline in the middle deformed zone clarifies the chronology of both tectonic deformation and depositional evolution of this collisional mountain belt. Our ~1200‐m‐thick section encompasses the upper Cenozoic terrigenous sequence within which ~300 sampling horizons yield an age span of ~8–2 Ma. Although the basal age in the Taxi He section of the Xiyu conglomerate (often cited as an indicator of initial deformation) is ~2.1 Ma, much earlier growth of the Tugulu anticline is inferred from growth strata dated at ~6.0 Ma. Folding of Neogene strata and angular unconformities in anticlines in the more proximal and distal deformed zones indicate deformation during Miocene and Early Pleistocene times, respectively. In the Taxi He area, sediment‐accumulation rates significantly accelerate at ~4 Ma, apparently in response to encroaching thrust loads. Together, growth strata, angular unconformities, and sediment‐accumulation rates document the northward migration of tectonic deformation into the northern Tian Shan foreland basin during the late Cenozoic. A progradational alluvial–lacustrine system associated with this northward progression is subdivided into two facies associations at Tugulu: a shallow lacustrine environment before ~5.9 Ma and an alluvial fan environment subsequently. The lithofacies progradation encompasses the time‐transgressive Xiyu conglomerate deposits, which should only be recognized as a lithostratigraphic unit. Along the length of the foreland, the locus of maximum shortening shifts between the medial and proximal zones of folding, whereas the total shortening across the foreland remains quite homogeneous along strike, suggesting spatially steady tectonic forcing since late Miocene times.  相似文献   

8.
Listric extensional fault systems - results of analogue model experiments   总被引:2,自引:0,他引:2  
Abstract Analogue models are a powerful tool for investigating progressive deformation in extensional fault systems. This paper presents exciting new insights into the progressive evolution of hanging wall structures in listric extensional terranes. Analogue models, scaled to simulate deformation in a sedimentary sequence, were constructed for simple listric and ramp/flat listric extensional detachments. For each detachment geometry homogeneous sand, sand/mica and sand/clay models were used to simulate respectively, deformation of isotropic sediments, of anisotropic sediments and of sedimentary sequences with competency contrasts. Roll-over anticlines with geometrically necessary crestal collapse graben structures are characteristic of the steepening-upwards segments of listric extensional fault systems in all of our models. With progressive deformation, crestal collapse grabens show hanging wall nucleation of new faults. Variations in graben size, amount of fault rotation and throw, are dependent on detachment curvature and amount of extension. Individual faults and associated fault blocks may significantly change shape during extension. Complex and apparently conjugate fault arrays are the result of superposition of successive crestal collapse grabens. Ramp/flat listric extensional fault systems are characterized by a roll-over anticline and a crestal collapse graben system associated with each steepening-upwards segment of the detachment and a ramp zone consisting of a hanging wall syncline and a complex deformation zone with local reverse faults. The roll-over anticlines and crestal collapse graben are similar in geometry to those formed in simple listric extensional systems. The models demonstrate that the geometry of the detachments exerts a fundamental control on the evolution of hanging wall structures. Analysis of particle displacement paths for these experiments provides new insights into the mechanical development of roll-over anticlines. Two general models for deformation above simple listric and ramp/flat listric extensional detachments have been erected.  相似文献   

9.
A central question in structural geology is whether, and by what mechanism, active faults (and the folds often associated with them) grow in length as they accumulate displacement. An obstacle in our understanding of these processes is the lack of examples in which the lateral growth of active structures can be demonstrated definitively, as geomorphic indicators of lateral propagation are often difficult, or even impossible to distinguish from the effects of varying lithology or non‐uniform displacement and slip histories. In this paper we examine, using the Zagros mountains of southern Iran as our example, the extent to which qualitative analysis of satellite imagery and digital topography can yield insight into the growth, lateral propagation, and interaction of individual fold segments in regions of active continental shortening. The Zagros fold‐and‐thrust belt contains spectacular whaleback anticlines that are well exposed in resistant Tertiary and Mesozoic limestone, are often >100 km in length, and which contain a large proportion of the global hydrocarbon reserves. In one example, Kuh‐e Handun, where an anticline is mantled by soft Miocene sediments, direct evidence of lateral fold propagation is recorded in remnants of consequent drainage patterns on the fold flanks that do not correspond to the present‐day topography. We suggest that in most other cases, the soft Miocene and Pliocene sediments that originally mantled the folds, and which would have recorded early stages in the growth histories, have been completely stripped away, thus removing any direct geomorphic evidence of lateral propagation. However, many of the long fold chains of the Zagros do appear to be formed from numerous segments that have coalesced. If our interpretations are correct, the merger of individual fold segments that have grown in length is a major control on the development of through‐going drainage and sedimentation patterns in the Zagros, and may be an important process in other regions of crustal shortening as well. Abundant earthquakes in the Zagros show that large seismogenic thrust faults must be present at depth, but these faults rarely reach the Earth's surface, and their relationship to the surface folding is not well constrained. The individual fold segments that we identify are typically 20–40 km in length, which correlates well with the maximum length of the seismogenic basement faults suggested from the largest observed thrusting earthquakes. This correlation between the lengths of individual fold segments and the lengths of seismogenic faults at depth suggest that it is possible, at least in some cases, that there may be a direct relationship between folding and faulting in the Zagros, with individual fold segments underlain by discrete thrusts.  相似文献   

10.
黄土高原流域地貌系统的地貌演化特征十分复杂,尚有诸多科学问题有待进一步深入研究。以往研究大多集中在流域地貌演化的侵蚀和发育特征等某一方面,缺乏从流域地貌系统及其势能信息熵的视角深入剖析野外多岩土层黄土小流域地貌演化特征的研究。为此,基于系统论的观点和方法,构建多岩土层黄土小流域地貌系统及其势能信息熵的数学模型,并以辛店沟小流域为例,对其地貌演化特征进行研究。结果表明:(1)构建的野外多岩土层黄土小流域地貌系统的概念模型及其势能信息熵的数学模型能够有效对辛店沟小流域进行数值模拟。(2)以黄土侵蚀作用为主的辛店沟小流域从2000—2019年的地貌演化过程是其势能信息熵的熵减过程和黄土地貌不断侵蚀的过程。(3)辛店沟小流域的势能信息熵能较好地反映该小流域的地貌演化阶段和地貌侵蚀过程。  相似文献   

11.
Topographic change in regions of active deformation is a function of rates of uplift and denudation. The rate of topographic development and change of an actively uplifting mountain range, the Santa Monica Mountains, southern California, was assessed using landscape attributes of the present topography, uplift rates and denudation rates. Landscape features were characterized through analysis of a digital elevation model (DEM). Uplift rates at time scales ranging from 104 to 106 years were constrained with geological cross-sections and published estimates. Denudation rate was determined from sediment yield data from debris basins in southern California and from the relief of rivers set into geomorphic surfaces of known age. First-order morphology of the Santa Monica Mountains is set by large-scale along-strike variations in structural geometry. Drainage spacing, drainage geometry and to a lesser extent relief are controlled by bedrock strength. Dissection of the range flanks and position of the principal drainage divide are modulated by structural asymmetry and differences in structural relief across the range. Topographic and catchment-scale relief are ≈300–900 m. Mean denudation rate derived from the sediment yield data and river incision is 0.5±0.3 mm yr?1. Uplift rate across the south flank of the range is ≈0.5±0.4 mm yr?1 and across the north flank is 0.24±0.12 mm yr?1. At least 1.6–2.7 Myr is required to create either the present topographic or the catchment-scale relief based on either the mean rates of denudation or uplift. Although the landscape has had sufficient time to achieve a steady-state form, comparison of the time-scale of uplift and denudation rate variation with probable landscape response times implies the present topography does not represent the steady-state form.  相似文献   

12.
Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ~13 km of basin strata provide a two‐ and three‐dimensional record of continuous deposition since ~18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5±0.5 Ma at the northernmost part of the foreland, to 8.6±0.1 Ma in the central (medial) part of the foreland and to 1.9±0.2, ~1.04 and 0.7±0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time‐transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9±3.3 Ma. Southward progradation occurred at an average rate of ~3 mm year?1 between 15.5 and 2 Ma, before accelerating to ~10 mm year?1. Abrupt changes in sediment‐accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ~4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4±0.1 and 1.4±0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross‐section through the foreland produces total shortening of 13–21 km and migration of the deformation front at 2.1–3.4 mm year?1 between 19 and 13.5 Ma, 1.4–1.6 mm year?1 between 13.5 and 4.0 Ma and 10 mm year?1 since 4.0 Ma. Migration of deformation into the foreland generally causes (1) uplift and reworking of basin‐capping conglomerate, (2) a local decrease of accommodation space above any active structure where uplift occurs, and hence a decrease in sedimentation rate and (3) an increase in accumulation on the margins of the structure due to increased subsidence and/or ponding of sediment behind the growing folds. Since 5–6 Ma, increased sediment‐accumulation (~0.8 mm year?1) and gravel progradation (~10 mm year?1) rates appear linked to higher deformation rates on the Keketamu, Atushi and Kashi anticlines and increased subsidence due to loading from both the Tian Shan and Pamir ranges, and possibly a change in climate causing accelerated erosion. Whereas the rapid (~10 mm year?1) progradation of the Xiyu conglomerate after 4.0 Ma may be promoted by global climate change, its overall progradation since 15.5 Ma is due to the progressive encroachment of deformation into the foreland.  相似文献   

13.
Integration of extensive fieldwork, remote sensing mapping and 3D models from high-quality drone photographs relates tectonics and sedimentation to define the Jurassic–early Albian diapiric evolution of the N–S Miravete anticline, the NW-SE Castel de Cabra anticline and the NW-SE Cañada Vellida ridge in the Maestrat Basin (Iberian Ranges, Spain). The pre shortening diapiric structures are defined by well-exposed and unambiguous halokinetic geometries such as hooks and flaps, salt walls and collapse normal faults. These were developed on Triassic salt-bearing deposits, previously misinterpreted because they were hidden and overprinted by the Alpine shortening. The Miravete anticline grew during the Jurassic and Early Cretaceous and was rejuvenated during Cenozoic shortening. Its evolution is separated into four halokinetic stages, including the latest Alpine compression. Regionally, the well-exposed Castel de Cabra salt anticline and Cañada Vellida salt wall confirm the widespread Jurassic and Early Cretaceous diapiric evolution of the Maestrat Basin. The NE flank of the Cañada Vellida salt wall is characterized by hook patterns and by a 500-m-long thin Upper Jurassic carbonates defining an upturned flap, inferred as the roof of the salt wall before NE-directed salt extrusion. A regional E-W cross section through the Ababuj, Miravete and Cañada-Benatanduz anticlines shows typical geometries of salt-related rift basins, partly decoupled from basement faults. These structures could form a broader diapiric region still to be investigated. In this section, the Camarillas and Fortanete minibasins displayed well-developed bowl geometries at the onset of shortening. The most active period of diapiric growth in the Maestrat Basin occurred during the Early Cretaceous, which is also recorded in the Eastern Betics, Asturias and Basque-Cantabrian basins. This period coincides with the peak of eastward drift of the Iberian microplate, with speeds of 20 mm/year. The transtensional regime is interpreted to have played a role in diapiric development.  相似文献   

14.
The Pakuashan anticline is uniquely suited for study of the forward and lateral growth of fault-related folds. The Pakuashan ridge development arises from the late Quaternary uplift of the most external thrust zone of the western foothills of Taiwan. From Kaoshiung to Taichung, recent and active westward thrusting occurs at the front of the foothills. The Pakuashan anticline, trending N 150°E in the northern part to N 000° in the southern part, has been active throughout the Quaternary period. This activity is marked by geological structures, tectonic geomorphology and seismicity. A multisource and multiscale approach to study of the continental collision setting has been undertaken to combine tectonics, sedimentology and geomorphology. Studies of fracture patterns allow identification of two main features of stress orientations: a WNW/ESE compression direction, and E–W and N–S extension directions. Quantitative geomorphic parameters have been used to define the morphotectonic evolution and to infer tectonic style along the mountain front. Geomorphic evidence provides significant information on the processes that govern lateral propagation of an active anticline. Quaternary terraces are uplifted, tilted and folded over the Pakuashan ridge. Drainage systems in areas of active compression give information on the thrust zone structures and their development. Steep drainage and high local relief indicate that the Pakuashan anticline forms a well-defined zone of high uplift, especially in the southern part. The two main controls on drainage in that area are rock strength in the hanging wall and propagation of the deformation towards the south.  相似文献   

15.
河流地貌系统的过程响应模型实验   总被引:6,自引:0,他引:6  
金德生 《地理研究》1990,9(2):20-28
本文讨论了河流地貌系统的过程响应模型的基本原理、设计步骤、模型砂料配制以及实验数据的系统分析,并给出了设计实例和某些分析成果。  相似文献   

16.
The evolution from Late Cretaceous to early Eocene of the well dated Amiran foreland basin in the NW Iranian Zagros Mountains is studied based on the reconstruction of successive thickness, palaeobathymetry and subsidence maps. These maps show the progressive forelandwards migration of the mixed carbonate‐siliciclastic system associated with a decrease in creation of accommodation. Carbonate facies variations across the basin suggest a structural control on the carbonate distribution in the Amiran foreland basin, which has been used as initial constraint to study the control exerted by syndepositional folding in basin architecture and evolution by means of stratigraphic numerical modelling. Modelled results show that shallow bathymetries on top of growing folds enhance carbonate production and basin compartmentalization. As a consequence, coarse clastics become restricted to the internal parts of the basin and only the fine sediments can by‐pass the bathymetric highs generated by folding. Additionally, the development of extensive carbonate platforms on top of the anticlines favours the basinwards migration of the depositional system, which progrades farther with higher fold uplift rates. In this scenario, build‐ups on top of anticlines record its growth and can be used as a dating method. Extrapolation of presented modelling results into the Amiran foreland basin is in agreement with an early folding stage in the SE Lurestan area, between the Khorramabad and Kabir Kuh anticlines. This folding stage would enhance the development of carbonate platforms on top of the anticlines, the south‐westward migration of the system and eventually, the complete filling of the basin north of the Chenareh anticline at the end of the Cuisian. Incremental thickness maps are consistent with a thin (0.4–2 km) ophiolite complex in the source area of the Amiran basin.  相似文献   

17.
《自然地理学》2013,34(6):474-506
The Cycle of Erosion formulated by the American geographer William Morris Davis in the 1880s remained the dominant paradigm in geomorphology well into the 20th century, before it waned in response to improved understanding of Earth's crustal and surface behavior. The Davisian model sought to explain landforms in terms of structure, process, and stage. Following initial rapid tectonic uplift, landforms were presumed to evolve on a quiescent crust through stages of youth, maturity, and old age, to culminate in a peneplain. A new cycle would be initiated by landform rejuvenation in response to a changing base level of erosion. This model was a reflection of its time, of the cycle mania of the 19th century, which in turn was founded on Hutton's limitless "succession of worlds" and dissatisfaction with earlier notions of landscape origins constrained by limited Earth time. Davis's model was derived from ideas regarding orogenic cycles favored by Dana and Le Conte, and of prolonged subaerial denudation toward base-level observed by Powell and Dutton. The model's supremacy was challenged from time to time, notably by the Pencks (father and son) and by alternative cyclic denudation models that invoked pediplanation and etchplanation rather than peneplanation. The relevance of the Davisian model declined after 1940 in response to a growing awareness of Earth's crustal mobility, changing climates and geomorphic processes, and refined dating of geologic time. The subsequent quantitative revolution in geomorphology, with its emphasis on measurement of form and process aided by rapidly improving technologies, and based in part on lingering antecedents, sounded the death knell for the Davisian model but also triggered something of a theoretical hiatus. In recent years, resurrection of the concept of isostasy, defined by Dutton but ignored by Davis, has led to the formulation of a more realistic but more complex model, briefly introduced here, in which landforms may be viewed as responses to more-or-less continuous interaction between tectonic activity, subaerial denudation, and isostatic adjustment.  相似文献   

18.
丹霞地貌发育几个重要问题的定量测算   总被引:9,自引:1,他引:8  
黄进 《热带地理》2004,24(2):127-130
论述了用河流阶地冲积层相当于古河流平水期水面的样品年龄及该采样点至今日河流平水期水面的相对高度求得地壳上升速度,再由地壳上升速度及丹霞地貌的相对高度求得地貌年龄,由地貌年龄及陡崖谷地上缘的宽度求得岩壁后退速度,由地貌年龄及被蚀去的地貌体积求得侵蚀速度,这是地貌学由定性描述向定量研究的一次尝试.  相似文献   

19.
The geomorphology of the western sector of the Mid-Channel Anticline (MCA), Santa Barbara, southern California suggests the actively growing fold is laterally propagating to the west. The presence of fold scarps and cross faults that segment the structure suggests that buried faults that are producing the folding are present at shallow depths. The summit area of the anticline at the Last Glacial Maximum (22 to 19 ka) was probably a small late Pleistocene island. Evidence for presence of the island includes what appears to be terrestrial erosion and is supported by assumption of sea level change and rates of uplift and subsidence.Pockmarks and domes ranging in diameter from  10 to 100 m, and several meters deep are present along the crest and flanks of the MCA. These features appear to be the result of hydrocarbon emission. Their formation has significantly modified the surface features, producing simple to complex erosional and/or constructional topography. A large pockmark near the anticline crest dated by two calibrated AMS radiocarbon dates of 25.3 and 36.9 ka continues to emit hydrocarbon gases. We term the topography produced by hydrocarbon emission as Hydrocarbon Induced Topography (HIT).  相似文献   

20.
The Quaternary to late Pliocene sedimentary succession along the margin of the South Caspian Basin contains numerous kilometre‐scale submarine slope failures, which were sourced along the basin slope and from the inclined flanks of contemporaneous anticlines. This study uses three‐dimensional (3D) seismic reflection data to visualise the internal structure of 27 mass transport deposits and catalogues the syndepositional structures contained within them. These are used to interpret emplacement processes occurring during submarine slope failure. The deposits consist of three linked structural domains: extensional, translational and compressive, each containing characteristic structures. Novel features are present within the mass transport deposits: (1) a diverging retrogression of the headwall scarp; (2) the absence of a conventional headwall scarp around growth stratal pinch outs; (3) restraining bends in the lateral margin; (4) a downslope increase in the throw of thrust faults. The results of this study shed light on the deformation that occurred during submarine slope failure, and highlight an important geological process in the evolution of the South Caspian Basin margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号