首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
熊大闰  邓李才 《天文学报》2005,46(3):258-272
重新审查了昴星团成员星的活动性和在同一颜色处Li丰度的弥散.发现大多数的研究者低估了昴星团恒星的活动性.重新研究了恒星的活动性(包括黑子活动)和星团中恒星的不均匀红化效应对Li丰度弥散的影响.得到的主要结论是:没有坚实的证据说明观测到的Li丰度弥散是代表具相同有效温度星团成员大气Li丰度存在真实的差异.相反,假若不是全部,其大部的视Li丰度弥散是活动星的大气效应所致.Li丰度一恒星自转关联很可能只是Li丰度-恒星活动性关联的一种反映。  相似文献   

2.
Li abundance is determined for 23 halo subdwarfs. About half of the stars show [Fe/H] < −1.4 and a space velocityV > 160 km s−1 Li appears to be present in all our halo stars, with an abundance within about ± 0.2 dex of the value logn (Li) = 2.0 found by Spite & Spite (1982). Thus our results provide confirmation of the main conclusion of Spite & Spite.  相似文献   

3.
Kepler卫星提供的长时序、高精度的光度观测和郭守敬望远镜(LAMOST)提供的大规模光谱观测为研究恒星表面转动周期与富锂巨星锂丰度关系提供了良好的数据.将LAMOST搜寻到的富锂巨星与Kepler观测交叉,获得了619颗共同源,研究了其中295颗有良好观测数据的富锂巨星的表面转动.在205颗有星震学参数的恒星中提取出14颗恒星的转动周期,其中氦核燃烧星(HeB) 11颗,红巨星支(RGB) 2颗, 1颗演化阶段未确定.本样本中的极富锂巨星(A(Li) 3.3 dex)皆为HeB;对于90颗没有星震学参数的样本因而没有依靠星震学手段确定演化阶段的恒星中,有22颗提取出了自转周期.前者的自转探测率为6.8%,显著高于之前工作中大样本巨星2.08%的探测率.同时,此研究首次从自转周期的角度确认了恒星转动与巨星锂增丰存在相关性,在增丰程度较弱时,自转周期分布比较弥散;强锂增丰的星倾向于快速转动.富锂巨星与极富锂巨星在转动速度随锂丰度的演化上展现了两个序列,在转动-锂丰度图上的A(Li)≈3.3 dex处产生第2个下降序列,或许暗示了两者在形成机制上的不同.极富锂巨星的样本中,随巨星锂增丰程度增强,恒星转速加快.这种相关性为由转动引起的额外混合作为富锂巨星形成的机制提供了支持.  相似文献   

4.
《New Astronomy》2002,7(8):495-510
With the aim of investigating the possible particular behavior of carbon in a sample of chemically peculiar stars of the main sequence without turning to modeling, we performed spectroscopic observations of three important and usually prominent single ionized carbon lines: 4267.261, 6578.052 and 6582.882 Å. In addition, we observed a large number of standard stars in order to define a kind of normality strip, useful for comparing the observed trend for the peculiar stars. We paid particular attention to the problem of the determination of fundamental atmospheric parameters, especially for the chemically peculiar stars for which the abundance anomalies change the flux distribution in such a way that the classical photometric methods to infer effective temperatures and gravities parameter cannot be applied. Regarding CP stars, we found a normal carbon abundance in Hg–Mn, Si (with some exceptions) and He strong stars. He weak stars are normal too, but with a large spread out of the data around the mean value. A more complicated behavior has been noted in the group of SrCrEu stars: four out of seven show a strong overabundance, being the others normal.  相似文献   

5.
With the aim of investigating the possible particular behavior of carbon in a sample of chemically peculiar stars of the main sequence without turning to modeling, we performed spectroscopic observations of three important and usually prominent single ionized carbon lines: 4267.261, 6578.052 and 6582.882 Å. In addition, we observed a large number of standard stars in order to define a kind of normality strip, useful for comparing the observed trend for the peculiar stars. We paid particular attention to the problem of the determination of fundamental atmospheric parameters, especially for the chemically peculiar stars for which the abundance anomalies change the flux distribution in such a way that the classical photometric methods to infer effective temperatures and gravities parameter cannot be applied. Regarding CP stars, we found a normal carbon abundance in Hg–Mn, Si (with some exceptions) and He strong stars. He weak stars are normal too, but with a large spread out of the data around the mean value. A more complicated behavior has been noted in the group of SrCrEu stars: four out of seven show a strong overabundance, being the others normal.  相似文献   

6.
High-resolution, high signal-to-noise ratio spectra have been obtained for 32 metal-poor stars. The equivalent widths of Li A6708 A were measured and the lithium abundances were derived. The average lithium abundance of 21 stars on the lithium plateau is 2.33±0.02 dex. The Lithium plateau exhibits a marginal trend along metallicity, dA(Li)/d[Fe/H] ?0.12±0.06, and no clear trend with the effective temperature. The trend indicates that the abundance of lithium plateau may not be primordial and that a part of the lithium was produced in Galactic Chemical Evolution (GCE).  相似文献   

7.
Elemental abundances in late-type stars are of interest in several ways: they determine the location of the stars in the HR diagram and therefore their ages, as well as the atmospheric structure in their middle and upper photospheres. Especially in the case of chromospherically active late-type stars the question arises to what degree the upper photosphere is influenced by the nearby chromosphere. Analysing S/N ∼ 200 and Δλ/λ ∼ 20 000 data, we found a mean metallicity index [M/H] = −0.2 for programme K and M field stars based on an analysis of spectra in the region 5500–9000 Å. We also found that the Ca  I 6162-Å transition is a potential surface gravity indicator for K-type stars. For the chromospheric activity interval 4.4 < log  F Mg II  < 6.6 we did not find any chromospheric activity impact on photospheric and upper photospheric transitions. With the derived metallicity, we confirmed the Li abundance from our previous paper and thus its dependence on the Mg  II chromospheric activity index. The nature of the spectrum for the active M-type star Gl 896A is explained by pure rotation of 14 km s−1. As far as the lithium–rotation relation is concerned, the spectrum of Gl 517 is rotationally broadened as well, by 12 km s−1, and the Li abundance is the second highest in our sample of stars. However, there is no link between very high Li abundance, 2.2 dex, in the K dwarf star Gl 5 and stellar rotation.  相似文献   

8.
We present high-resolution spectroscopic observations for a sample of 21 young, solar-type stars near the Sun recently discovered in the X-ray wavelength range during the ROSAT all-sky survey. Based on these observations, we derive the lithium (Li) abundances of these 21 sample stars. Using the lithium abundances and the X-ray luminosity, we investigated the relationship between the Li abundances and the X-ray activity. We found a clear correlation between the lithium abundances and the X-ray luminosity: as the X-ray luminosity became stronger, the lithium abundance decreases in our sample stars. Our sample results provide further evidence that a correlation appears to exist between Li abundances, X-ray activity and age for a large number of solar-type stars. The results also confirm the presence of very active young stars close to the Sun, in agreement with recent findings from UV and X-ray surveys.  相似文献   

9.
Recent determinations of the abundance of the light-element Li in very metal-poor stars show that its intrinsic dispersion is essentially zero and that the random error in the estimated mean Li abundance is negligible. However, a decreasing trend in the Li abundance toward lower metallicity indicates that the primordial abundance of Li can be inferred only after allowing for nucleosynthesis processes that must have been in operation in the early history of the Galaxy. We show that the observed Li versus Fe trend provides a strong discriminant between alternative models for Galactic chemical evolution of the light elements at early epochs. We critically assess current systematic uncertainties and determine the primordial Li abundance within new, much tighter limits: &parl0;Li&solm0;H&parr0;p=1.23+0.68-0.32x10-10. We show that the Li constraint on OmegaB is now limited as much by uncertainties in the nuclear cross sections used in big bang nucleosynthesis (BBN) calculations as by the observed abundance itself. A clearer understanding of systematics allows us to sharpen the comparison with 4He and deuterium and the resulting test of BBN.  相似文献   

10.
We present determinations of fundamental parameters and lithium abundances in eleven solar-type stars through observations of the Li I λ6707.8Å. The correlations between the abundance of lithium and that of other elements (Ca, K and Fe) are also discussed. The analysis of our data indicates that the maximum lithium abundance decreases with decreasingT eff, and also decreases with increasing age. The sun is just one of the stars with low lithium abundance. One of the sample stars shows a high lithium abundance of as much as 2.34 dex. The plot of lithium abundance versus [Ca/H] is similar to that versus [Fe/H]. Lithium seems depleted more quickly than potassium in the cool solar-type stars. The correlation between the lithium abundance and the other stellar characteristics, such as absolute visual magnitude, does not seem very strong. The large scatter present at each color cannot be uniquely attributed to different initial compositions or to pure age effect. Other complex mechanisms may exist to provide different amounts of lithium depletion for stars with properties similar to the sun.  相似文献   

11.
We review three Li problems. First, the Li problem in the Sun, for which some previous studies have argued that it may be Li-poor compared to other Suns. Second, we discuss the Li problem in planet hosting stars, which are claimed to be Li-poor when compared to field stars. Third, we discuss the cosmological Li problem, i.e. the discrepancy between the Li abundance in metal-poor stars (Spite plateau stars) and the predictions from standard Big Bang Nucleosynthesis. In all three cases we find that the “problems” are naturally explained by non-standard mixing in stars.  相似文献   

12.
The lithium abundances of planet-harbouring stars have been compared with the lithium abundances of open clusters and field stars. Young (chromospherically active) and subgiant stars have been eliminated from the comparison because they are at different stages of evolution and Li processing than the planet-harbouring stars, and hence have systematically higher Li abundances. The analysis showed that the Li abundances of the planet-harbouring stars are indistinguishable from those of non-planet-harbouring stars of the same age, temperature and composition. This conclusion is opposite to that arrived at by Gonzalez & Laws; it is believed that the field-star sample used by them contained too wide a range of ages, evolutionary types and temperatures to be accommodated by the model that they adopted to describe the dependence of Li on the parameters. The Li abundance does not appear set to provide key insights into the formation and evolution of planetary systems.  相似文献   

13.
NLTE calculations of carbon abundance in Peg atmosphere revealed a slight deficiency of this element ([C/H] =–0.25). A short discussion of this result is given. The list of CII that could be used for LTE calculation of carbon abundance in hot stars is presented.  相似文献   

14.
New spectral observations of chemically peculiar (CP) magnetic stars were obtained using an NES echelle spectrometer with a BTA telescope in the Special Astrophysical Observatory (Russian Academy of Sciences). Several stars were shown to have anomalous Li abundances. Testing and monitoring the stars with Doppler shifts Vsini > 10 km/s indicated that the lithium 6708 Å line was variable in the spectra of some roaAP-CP stars. To distinguish variable features in the spectra, the dispersogram technique was used. The most peculiar among the stars studied is HD 12098. The strong and variable lithium 6708 Å line was detected in the spectrum of this star. The star has been shown to have greatly different lithium abundances in two rotation phases corresponding to opposite surface areas. As mentioned earlier, a similar behavior of the Li blend was found in the spectra of HD 83368 and HD 60435 which have lithium spots on their surface. Spectral observations of slowly rotating CP stars with the Doppler shifts Vsini < 10 km/s revealed the strong and nonvariable lithium 6708 Å line in the spectra of these stars. Quantitative spectral analysis using the Li I 6708 Å resonance doublet and the Li I 6103 Å line shows the lithium abundance, as determined by the 6103 Å line, to be somewhat greater than that determined by the 6708 Å line. A higher ratio of 6Li/7Li amounting to ~0.3–0.5 was found in these stars. 6Li production is assumed to be due to spallation reactions on the surface of magnetic CP stars; this isotope ratio remained in strong magnetic fields.  相似文献   

15.
We report on the analysis of high-resolution optical spectra for 77 subdwarf B (sdB) stars from the ESO Supernova Ia Progenitor Survey. Effective temperature, surface gravity, and photospheric helium abundance are determined simultaneously by spectral line profile fitting of hydrogen and helium lines, and are found to be in agreement with previous studies of sdB stars. Twenty four objects show spectral signs of a cool companion, being either companion absorption lines or a flux contribution at Hα. Five stars with relatively high luminosity show peculiar Hα profiles, possibly indicating stellar winds. Our results are compared to recent theoretical simulations by Han et al. [MNRAS, 341, 669] for the distribution in effective temperature and surface gravity, and are found to agree very well with these calculations. Finally, we present a binary system consisting of two helium-rich hot subdwarfs.  相似文献   

16.
锂是少数几种在大中生成的元素之一,研究锂丰度对于探讨各种元素核合成理论以及星系的早期化学演化规律都具有十分重要的意义,阐述了有关恒星(类太阳星,晕族恒星和主序前得)及星团锂丰度的新近观测结果。介绍了在锂的核合成理论研究方面非局部热动平衡效应的影响及锂在恒星演化中的衰竭机制等理论的研究进展和存在的问题。  相似文献   

17.
In this paper we review the chemical evolution models for the Galactic bulge: in particular, we discuss the predictions of models as compared with the available abundance data and infer the mechanism as well as the time scale for the formation of the Galactic bulge. We show that good chemical evolution models reproducing the observed metallicity distribution of stars in the bulge predict that the [α/Fe] >0 over most of the metallicity range. This is a very important constraint indicating that the bulge of our Galaxy formed at the same time and even faster than the inner Galactic halo. We also discuss predictions for the evolution of light elements such as D and 7Li and conclude that the D astration should be maximum due to the high star formation rate required for the bulge whereas the evolution of the abundance of Li should be similar to that observed in the solar neighbourhood, but with an higher Li abundance in the interstellar medium at the present time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The problem of lithium in chemically peculiar Ap-CP stars has been the subject of debate for many years. The main reason for this is a lack of spectral observations of Ap stars in the neighborhood of the lithium resonance doublet Li I 6708 Å. An international cooperation project on “Lithium in cool CP stars with magnetic fields” was started in 1996. Systematic observations of CP stars in spectral regions of the 6708 Å and 6103 Å lines at the ZTSh (CrAO), CAT (ESO), Feros (ESO), and the 74″ telescope of the Mount Stromlo Observatory (Australia) have been used to analyze spectra of several CP stars studied by the way the 6708 Å lithium line varies with the stars’ rotational phase. Monitoring of the spectra of the oscillating CP stars (group I) HD 83368, HD 60435, and HD 3980, for which significant Doppler shifts of the Li I 6708 Å line are observed led to the discovery of “lithium spots” on the surface of these stars whose positions are related to the magnetic field structure. Models of the surfaces of these stars with the special program “ROTATE” based on the profiles of the Li I 6708 Å line are used to estimate the size of the spots, their positions on the stars’ surface, and the lithium abundances in these spots. A detailed analysis and modelling of the spectra of slowly rotating oscillating CP stars with strong, invariant lithium 6708 Å emission, including blending with lines of the rare earth elements, reveals an enhanced lithium abundance, with the abundance determined from the lithium 6103 Å line being higher than that determined from the 6708 Å line for all the stars. This may indicate vertical stratification of lithium in the atmospheres of CP stars with an anomalous isotopic composition (6Li/7Li = 0.2–0.5). HD 101065, an ultraslow rotator (vsini ≈ 1.5) visible from the poles and with powerful oscillations which cause pulsating line broadening in its spectrum, is unique among these stars. The amount of lithium in the atmosphere of HD 101065 logN(Li) = 3.1 on a scale of logN(H) = 12.0 and the isotope ratio 6Li/7Li ≈ 0.3. The high estimates of 6Li/7Li may be explained by the production of lithium in spallation reactions and the preservation of surface 6Li and 7Li by strong magnetic fields in the upper layers of the atmosphere near the magnetic poles. __________ Translated from Astrofizika, Vol. 50, No. 3, pp. 463–492 (August 2007).  相似文献   

19.
We calculated 240 model atmospheres of carbon giants with high carbon abundance (2800 K ≤ T eff ≤ 3400 K, 0.06 ≤ log(C/O) ≤ 2.7). This set of models was used for modelling of the energy distribution in the spectrum of an evolved carbon star DY Per demonstrating photometric features of the R CrB type stars. Most of the models are metal-poor (−3.5 ≤ [Fe/H] < 0) and a portion of them was calculated with the hydrogen deficiency (1/9 ≤ H/He < 9/1). The calculations of the models were carried out taking into account specific for carbon stars sources of opacity in the frame of the classic approaches. The opacity sampling method was used to calculate the opacity due to the atomic and molecular line absorption.  相似文献   

20.
The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high‐resolution, high‐quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived 6Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non‐LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced by convective flows in the atmospheres of cool stars, and can mimic the presence of 6Li. We also discuss briefly the case of the carbon isotopic ratio in metal‐poor stars, and provide a new determination of the nickel isotopic ratios in the solar atmosphere. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号