首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field, petrographic and geochemical criteria identify the Eocambrian, 500 km2, mafic-ultramafic complex of Jabal al Wask as an ophiolite possibly formed in a back-arc environment. It is one of several ultramafic bodies that lie in NW-SE zones across western Arabia and northeast Africa. The basement between these zones is mainly granitic and seemingly developed by the cratonization of island arcs. It is suggested that the ultramafic zones are sutures between these arcs and that the ophiolites represent oceanic lithosphere remnants of back-arc seas.As palaeomagnetic evidence precludes any extensive movement of individual arcs, a palaeogeographic situation analogous to that of present-day southwest Pacific is envisaged.  相似文献   

2.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   

3.
The distribution of the focal mechanisms of the shallow and intermediate depth (h>40 km) earthquakes of the Aegean and the surrounding area is discussed. The data consist of all events of the period 1963–1986 for the shallow, and 1961–1985 for the intermediate depth earthquakes, withM s 5.5. For this purpose, all published fault plane solutions for each event have been collected, reproduced, carefully checked and if possible improved accordingly. The distribution of the focal mechanisms of the earthquakes in the Aegean declares the existence of thrust faulting following the coastline of southern Yugoslavia, Albania and western Greece extending up to the island of Cephalonia. This zone of compression is due to the collision between two continental lithospheres (Apulian-Eurasian). The subduction of the African lithosphere under the Aegean results in the occurrence of thrust faulting along the convex side of the Hellenic arc. These two zones of compression are connected via strike-slip faulting observed at the area of Cephalonia island. TheP axis along the convex side of the arc keeps approximately the same strike throughout the arc (210° NNE-SSW) and plunges with a mean angle of 24° to southwest. The broad mainland of Greece as well as western Turkey are dominated by normal faulting with theT axis striking almost NS (with a trend of 174° for Greece and 180° for western Turkey). The intermediate depth seismicity is distributed into two segments of the Benioff zone. In the shallower part of the Benioff zone, which is found directly beneath the inner slope of the sedimentary arc of the Hellenic arc, earthquakes with depths in the range 40–100 km are distributed. The dip angle of the Benioff zone in this area is found equal to 23°. This part of the Benioff zone is coupled with the seismic zone of shallow earthquakes along the arc and it is here that the greatest earthquakes have been observed (M s 8.0). The deeper part (inner) of the Benioff zone, where the earthquakes with depths in the range 100–180 km are distributed, dips with a mean angle of 38° below the volcanic arc of southern Aegean.  相似文献   

4.
The spectral study of the Bouguer anomally map of Central India suggests an uplifted crust-mantle interface under the Mahandi graben. This study has delineated three subsurface levels of anomalous masses at the respective depths of 23 km, 8 km, and 2 km apparently representing the Moho, an intermediate discontinuity in the sialic part of the crust and the basement, respectively. Model study of the Bouguer anomaly along a profile suggests a typical continental graben type subsurface structure with a low density depression in the sialic part of the crust between 8 and 18 km supported by an elevated upper mantle of intermediate density (3.4 g/cm3) varying in depth from 25 km to 55 km. The depths of the inferred interfaces in case of Bundelkhand granite are 32 km, 11 km, and 1.5 km, which might represent the Moho, the base of intruded granite massif, and some shallow compositional variation. Similar studies in case of Vindhyan basin have brought out three discontinuities at the respective depths of 16 km, 6–4.5 km, and 2.4 km. The first horizon at the depth of 16 km probably represents the interface between the granitic and the basaltic part of the crust. The 6–4.5 km is the depth of the basement, with the 2.4 km interface separating Bijawar rocks from Vindhyans wherever they are present. A generalized inversion of a profile across a positive belt of Bouguer anomaly representing the subsurface Bijawar rocks support the above result.  相似文献   

5.
Réunion is a volcanic edifice whose origin is related to a hot spot in the Indian Ocean. Only 3% of its volume is emergent. Many geological and geophysical studies were carried out on Réunion Island during the 1980's but few of them allow study of the internal structure of the edifice. Several gravity surveys have been carried out on the island since 1976 and we have compiled the available data set. The lack of data on the western side of the island led us to conduct a regional survey in 1993 to obtain a more homogeneous distribution of the stations. Computation of Bouguer anomalies for different correction densities accounts for the variable density of the rocks constituting the edifice and provides a distribution of gravity anomalies interpreted as dense bodies of intrusive rocks inside the edifice. Two very large intrusive complexes can be unambiguously recognised: one beneath Piton des Neiges and one beneath the Grand Brûlé area. Both have been penetrated by geothermal exploration drill holes and the first is also known from outcrop observations. 2.5D simple models were constructed to reveal the geometry and extent of the buried intrusives. They are deeply rooted, extending several kilometres below sea level, and extensive (20–25 km long and 10–13 km wide for the Piton des Neiges complex, 12–15 km long and some kilometres wide for the Grand Brûlé complex). The development of such complexes implies that the activity of the two volcanic centres was long lasting and remained stable while the volcanoes were growing. The Grand Brûlé complex has been interpreted as relics of an old volcano named Alizés Volcano. The interpretation of the gravity maps suggests the presence of a ridge of dense rocks to the North of the axis joining the centres of Piton des Neiges and Piton de la Fournaise volcanoes. By analogy with the other structures, 2.5D models show that this structure would culminate between 0 and 1 km below sea level and be 15 km wide. This complex induces a maximum anomaly in Takamaka Valley and we thus propose to name it Takamaka Volcano. No geological evidence of the nature of these dense rocks is available but the ridge coincides with structures revealed by magnetic and seismic data. Interpretation of the Bouguer anomaly maps suggests that the inner gravity structure of Piton de la Fournaise is not characterised by the presence of a voluminous dense body but probably by more restricted concentrations of dense rocks. Some structures can be recognised: along the present NE and SE rift zones and in the previous central part of Piton de la Fournaise to the West of the present summit. The recent eastward migration of the centre of activity of Piton de la Fournaise accounts for the lack of a large positive anomaly beneath the active craters.  相似文献   

6.
Eric S.  Andal  Shoji  Arai  Graciano P.  Yumul Jr 《Island Arc》2005,14(3):272-294
Abstract   The Isabela ophiolite shows a complete ophiolite sequence exposed along the eastern coast of northern Luzon, the Philippines. It forms the Cretaceous basement complex for the northeastern Luzon block. This ophiolite is located at the northern end of a trail of ophiolites and ophiolitic bodies along the eastern margin of the Philippine Mobile Belt. This paper presents new findings regarding the nature and characteristics of the Isabela ophiolite. Peridotites from the Isabela ophiolite are relatively fresh and are composed of spinel lherzolites, clinopyroxene-rich harzburgites, depleted harzburgites and dunites. The modal composition, especially the pyroxene content, defines a northward depletion trend from fertile lherzolite to clinopyroxene-rich harzburgites and more refractory harzburgites. Variation in modal composition is accompanied by petrographic textural variations. The chromium number of spinel, an indicator of the degree of partial melting, concurs with petrographic observations. Furthermore, the Isabela ophiolite peridotites are similar in spinel and olivine major-element geochemistry and clinopyroxene rare earth-element composition to abyssal peridotites from modern mid-oceanic ridges. Petrological and mineral compositions suggest that the Isabela ophiolite is a transitional ophiolite subtype, with the fertile lherzolites representing lower sections of the mantle column that are usually absent in most ophiolitic massifs. The occurrence of the fertile peridotite presents a rare opportunity to document the lower sections of the ophiolitic mantle. The variability in composition of the peridotites in one continuous mantle section may also represent a good analogy of the melting column in the present-day mid-oceanic ridges.  相似文献   

7.
Sabah A.  Ismail  Shoji  Arai  Ahmed H.  Ahmed  Yohei  Shimizu 《Island Arc》2009,18(1):175-183
Ophiolitic rocks (chromitites and serpentinized peridotites) were petrologically examined in detail for the first time from Rayat, in the Iraqi part of the Zagros thrust zone, an ophiolitic belt. Almost all the primary silicates have been altered out, but chromian spinel has survived from alteration and gives information about the primary petrological characteristics. The protolith of the serpentinite was clinopyroxene-free harzburgite with chromian spinel of intermediate Cr# (= Cr/[Cr + Al] atomic ratio) of 0.5 to 0.6. The harzburgite with that signature is the most common in the mantle section of the Tethyan ophiolites such as the Oman ophiolite, and is the most suitable host for chromitite genesis. Except for one sample, which has Cr# = 0.6 for spinel, the Cr# of spinel is high, around 0.7, in chromitite. The variation in Cr# of spinel in chromitite observed here has been also reported in the Oman ophiolite. The peridotite with chromitite pods exposed at Rayat was derived from an ophiolite similar in petrological character to the Oman ophiolite, one of the typical Tethyan ophiolites (fragments of Tethyan oceanic lithosphere). This result is consistent with the previous interpretation based on geological analysis.  相似文献   

8.
The earthquake was modeled using regional broad-band stations in Greece (epicentral distances up to 340 km). Inversion of the amplitude spectra of complete waveforms (0.05–0.08 Hz), later confirmed by the forward waveform modeling, provided strike = 150°, dip = 70°, rake = 10°, scalar moment M o = 4.1e18 Nm, and depth of 8 km. As the aftershock distribution had the same strike, the earthquake was interpreted as a left-lateral strike slip. The fault length was estimated by combining observed mainshock spectra and synthetic spectra of a weak event, representing impulse response of the medium. This gave the fault length estimate of 16 to 24 km. Similar results were obtained by means of a true M w = 5 aftershock. The waveform modeling (0.05–0.20 Hz) was performed for the 20 × 10 km finite-extent fault, with a homogenous slip of 0.63 m. It showed that the rupture propagation along the 150° strike was predominantly unilateral, from NW to SE.  相似文献   

9.
关于西沙海槽正磁异常带的地球物理认识   总被引:1,自引:0,他引:1       下载免费PDF全文
南海北部西沙海槽存在东西向正磁异常带,长约350 km,前人推测为基性或超基性物质反磁化的反映.通过对西沙海槽大比例尺高精度航磁资料分带化极处理和反演拟合,发现西沙海槽正磁异常带由海槽北缘隐伏强磁性体斜磁化引起.磁性体埋深超过9 km,推测是残留洋壳(蛇绿岩),为海南岛昌江—琼海断裂带或海南岛九所—陵水断裂带所代表的缝合带在南海北部的延伸段.  相似文献   

10.

前人研究表明喜马拉雅造山带西部出露的拉昂错蛇绿混杂岩为新特提斯洋壳岩石圈的一部分,代表了新特提斯洋的关闭及其随后大洋岩石圈物质的仰冲.鉴于拉昂错蛇绿岩的构造演化历史尚不明确,前期对于拉昂错蛇绿岩带构造归属的研究主要基于岩石学研究和地表地质调查等,缺少精细的深部地壳结构进行运动学指示,因此证明拉昂错蛇绿混杂岩体的构造归属并非易事.本次研究中,我们对前期获得的一条南北向延伸穿过雅鲁藏布江缝合带和喜马拉雅造山带西部拉昂错蛇绿岩体的112 km长的深反射地震剖面进行了构造解释.高分辨率的深反射地震剖面清晰地显示了喜马拉雅山脉西部造山带内发育良好的地壳双冲构造几何结构,该地壳尺度双冲构造将印度俯冲地壳物质从底部运移到上部.同时,地震剖面还显示拉昂错蛇绿岩体和雅鲁藏布江蛇绿岩体在上地壳深处呈倾向相反但底部相通的结构构造.结合前人的岩石学/地球化学/地表地质研究成果,我们认为拉昂错蛇绿岩体为雅鲁藏布江缝合带蛇绿岩体的一部分.印度俯冲前缘的双冲构造折返将深部物质带到地表过程的同时,还将部分雅鲁藏布江蛇绿混杂岩携带至南侧距主缝合带位置大约20 km的拉昂错蛇绿岩区域.

  相似文献   

11.
From our interpretation of the Bouguer gravity and aeromagnetic anomalies in south-east Scotland, we conclude that a massive granite batholith underlies the greater part of the eastern Southern Uplands. The granite model which we computed earlier from gravity anomalies in the Tweeddale area fits the observed magnetic anomalies closely, if a normal magnetization of 0.095 A m–1 is assigned, similar to values found for exposed local granites. Further gravity modelling shows that, apart from the Tweeddale boss, the granite shallows to less than 1 km near Lammer Law in East Lothian and extends north of the Lammermuir Fault. A model for the East Lothian volcanics was computed from their aeromagnetic anomalies, then their gravitational effect was combined with that estimated for the Devonian and Carboniferous sediments and the result stripped off the observed gravity field. The residual gravity anomalies were used to generate a two-dimensional model for the granite north of the Lammermuir Fault. The expected tectonic consequences of a massive granite batholith in the eastern Southern Uplands are compared with the known development of faults and sedimentary basins around its margins.  相似文献   

12.
长期以来,对内蒙古贺根山缝合带中的镁铁-超镁铁岩,有着"蛇绿岩"、"岩浆岩"、"幔源熔-流体"等不同认识.近年来在铬铁矿中发现了金刚石等深部地幔矿物,如何认识携带这些物质的幔源熔-流体的上涌?缝合带在镁铁-超镁铁岩的形成过程中起到什么作用?解决问题的关键之一是弄清镁铁-超镁铁岩的深部产状,这需要来自地球物理观测数据的依据.本文基于航磁和重力数据的研究表明,贺根山地区的蛇绿岩块均呈现高磁异常特征,其中贺根山岩块埋深明显大于其他岩块,表现为高磁异常与低重力异常,与地表出露的蛇纹石化的镁铁-超镁铁岩带对应.对航磁化极异常与布格重力异常数据做了向上延拓处理,进行了磁源形态及底界深度的估算,并利用基于相异度算子的边缘增强方法辅助识别断裂.结果表明,贺根山岩块贯穿地壳,且附近存在超壳断裂.地表至中地壳主要由蛇纹石化的镁铁-超镁铁岩组成,下地壳主要为超镁铁质岩组成,它们充填在一组宽约30km的NEE向断裂带中,大地电磁测深剖面揭示的壳-幔电性结构进一步证实控制缝合带的是岩石圈断裂,贺根山缝合带具有明显的根部.由此推测,在地幔底辟上涌的背景下,幔源熔-流体沿着岩石圈断裂持续上升到达浅表,暗示该区板块的...  相似文献   

13.
We invert teleseismic relative residuals recorded in the Thessaloniki seismological network, for the crustal and upper mantle structure beneath Chalkidiki (Northern Greece) where extension is observed to have occurred since Eocene time. After conducting several tests to insure the reliability of the results, a low-velocity anomaly (5–8%) is observed which is located beneath Chalkidiki for the top two layers (0–35 km and 35–85 km); this anomaly is probably related to the fact that the crust is thicker here than beneath the neighboring basins. For the two other layers, with depths between 85 and 145 km and between 145 and 205 km, relatively low velocities (3–5%) are observed beneath the Thermaico Gulf and the Kavala Basin. These results are compared with Lyberis's (1985) [8] calculated shallowing of the isotherms due to extension and thinning of the lithosphere. We conclude that the velocity anomalies that we observe are likely to be due to the intrusion of hot material from the asthenosphere into the gap in the extended lithosphere.  相似文献   

14.
Using P-wave travel time data from local seismicity, the crustal structure ofthe central and southern part of Colombia was determined. A very stableand narrow range of possible velocity models for the region was obtainedusing travel time inversion. This range of models was tested with earthquakelocations to select the best velocity model. The 1D velocity modelproposed has five layers over a halfspace, with interfaces at depths of 4,25, 32, 40 and 100 km and P-wave velocities of 4.8, 6.6, 7.0, 8.0, 8.1and 8.2 km/sec, respectively. According to this model the Moho lies at32 km depth on average. For P-waves, the station corrections range from–0.62 to 0.44 sec and for S-wave they range from –1.17 to 0.62 sec.These low variations in station residuals indicate small lateral velocitychanges and therefore the velocity model found should be well suited forearthquake locations and future starting model for 3D tomography studies.Using this new velocity model, the local earthquakes were relocated. Theshallow seismicity, < 30 km, clearly shows the borders betweentectonic plates and also the main fault systems in the region. The deepseismicity, > 80 km, shows two subduction zones in the country: theCauca subduction zone with a strike of N120°E, dip of 35°and thickness of 35 km, and the Bucaramanga subduction zone which has,for the northern part, a strike of N103°E, dip of 27° andthickness undetermined and, for the southern part, a strike ofN115°E, dip of 40° and thickness of 20 km. Based ondifferences of thickness of brittle crust in the subducted slab and spatialdistribution of the seismicity, the Cauca and Bucaramanga subduction zonesseem to represent independent processes. The Cauca subduction seems tobe connected to the process of the Nazca plate being subducted under theNorth Andes Block. In the Bucaramanga subduction zone, the transitionbetween southern and northern parts and changes in geometry of the slabseem to be gradual and there is no evidence of a tear in the slab, howeverthe local seismicity does not allow us to determine which plate or plates arebeing subducted. The Bucaramanga nest appears to be included into thesubducted slab.  相似文献   

15.
For the first time, we present the variation of crust–mantle boundary beneath the northeast Iran continental collision zone which is genetically part of the Alpine–Himalayan orogeny and beneath Central Iran which is a less-deformed tectonic block. The boundary was imaged by stacking teleseismic P–S converted phases and shows a strong variation of Moho from 27.5 km under Central Iran to 55.5 km beneath the Binalud foreland basin. The thickest crust is not located beneath the high topography of the Kopeh Dagh and Binalud mountain ranges suggesting that these mountain ranges are not supported by a crustal root. The simple gravity modeling of the Bouguer anomaly supports this idea.  相似文献   

16.
The unique geometry of the geomagnetic field lines over the equatorial ionosphere coupled with the E–W electric field causes the equatorial ionization anomaly (EIA) and equatorial spread-F (ESF). lonosonde data obtained at a chain of four stations covering equator to anomaly crest region (0.3 to 33 °N dip) in the Indian sector are used to study the role of EIA and the associated processes on the occurrence of ESF. The study period pertains to the equinoctial months (March, April, September and October) of 1991. The ratios of critical frequency of F-layer (f0F2) and electron densities at an altitude of 270 km between Ahmedabad (33 °N dip) and Waltair (20 °N dip) are found to shoot up in the afternoon hours on spread-F days showing strengthening of the EIA in the afternoon hours. The study confirms the earlier conclusions made by Raghava Rao et al. and Alex et al. that a well-developed EIA is one of the conditions conducive for the generation of ESF. This study also shows that the location of the crest is also important in addition to the strength of the anomaly.  相似文献   

17.
联合芦山地震序列5285个地震的50711条P波初至绝对到时数据及7294691条高质量的相对到时数据,利用双差地震层析成像方法联合反演了芦山震源区高分辨率的三维P波速度精细结构及5115个地震震源参数.反演结果表明,芦山主震震中为30.28°N,103.98°E,震源深度为16.38 km,主震南西段余震扩展长度约23 km,余震前缘倾角较和缓,主震北东段余震扩展长度约12 km,余震前缘呈铲形,倾角较陡.芦山震源区P波三维速度结构表现出明显的横向不均匀性,近地表处的P波速度异常与地形起伏及地质构造密切相关:宝兴杂岩对应明显的高速异常,此异常由地表延伸到地下15 km深度附近,而中新生代岩石表现为低速异常;大兴附近区域亦显示出小范围的大幅度高速异常,宝兴高速异常与大兴高速异常在10 km深度附近相连,进而增加了芦山震源区的高低速异常对比幅度.在芦山主震的南西、北东两段速度结构存在着较大差异,芦山主震在水平向位于宝兴及大兴高速异常所包围的低速异常的前缘.主震南西段余震主要发生在倾向北西的高低速异常转换带上并靠近低速一侧,其下盘为低速异常,上盘为高速异常.而芦山主震北东段的余震主要分布在宝兴高速体与大兴高速体之间,主发震层向北西倾斜,主发震层上方的宝兴高速异常下边界出现一条南东倾向的反冲地震带,两地震带呈"y"型分布.  相似文献   

18.
East Anatolia is a region of high topography made up of a 2-km high plateau and Neogene and Quaternary volcanics overlying the subduction-accretion complex formed by the process of collision. The aeromagnetic and gravity data surveyed by the Mineral Research and Exploration (MTA) of Turkey have been used to interpret qualitatively the characteristics of the near-surface geology of the region. The residual aeromagnetic data were low-pass filtered and analyzed to produce the estimates of magnetic bottom using the centroid method and by forward modelling of spectra to evaluate the uncertainties in such estimates. The magnetic bottom estimates can be indicative of temperatures in the crust because magnetic minerals lose their spontaneous magnetization at the Curie temperature of the dominant magnetic minerals in the rocks and, thus, also are called Curie point depths (CPDs). The Curie point depths over the region of Eastern Anatolia vary from 12.9 to 22.6 km. Depths computed from forward modelling of spectra with 200–600 km window sizes suggest that the bottom depths from East Anatolia from the magnetic data may have errors exceeding 5 km; however, most of the obtained depths appear to lie in the above range and indicate that the lower crust is either demagnetized or non-magnetic. In the interpretation of the magnetic map, we also used reduction-to-pole (RTP) and amplitude of total gradient of high-pass filtered anomalies, which reduced dipolar orientation effects of induced aeromagnetic anomalies. However, the features of the RTP and the total gradient of the high-pass filtered aeromagnetic anomalies are not highly correlated to the hot spring water locations. On the other hand, many high-amplitude features seen on the total gradient map can be correlated with the ophiolitic rocks observed on the surface. This interpretation is supported by Bouguer gravity data. In this paper, we recommend that the sources of the widespread thermal activity seen in East Anatolia must be investigated individually by means of detailed mapping and modelling of high resolution geophysical data to assess further the geothermal potential of the region.  相似文献   

19.
The 2.5-D gravity-magnetic models of the upper crustal structures of Sahl El Qaa Area, Southwestern Sinai were constructed along seven profiles, focusing on the uppermost crustal layers to a depth of 4–5 km. In addition separation filtering process; spectral analysis and trend analysis were used to investigate the Bouguer and total intensity aeromagnetic field maps qualitatively and quantitatively. The study showed that the regional structures consist of tilted blocks in the form of a major NW-synclinal feature with an axis dipping northward. This feature is dissected by the NE trending cross faults forming horsts, grabens and step-fault structures. The tilted blocks are controlled by a major normal fault system and are greatly modified in the dip regime from north to south. They show a regional NW dip regime in northern and southern parts, where the depth to the basement reaches about 2–3 km in the down dip. In the central portion, the basin is dipping steeply to the east, with maximum depths attaining about 4–5 km.  相似文献   

20.
喜玛拉雅“东构造结”地区特异重力场的探讨   总被引:4,自引:6,他引:4       下载免费PDF全文
跨越中、印、缅三国交界的青藏高原东南的喜玛拉雅“东构造结”地区(92°E~97°E,26°N~30°N)一半以上的面积尚没有重力测点,是重力数据空白区,故无法直接研究其重力场特征与深部地壳结构(构造).本文分析了卫星重力异常的特性,提出应用卫星重力异常作为近似空间重力异常,并作布格改正后,得到的布格重力异常具有与该地区地形高程呈镜像相关的特征,可用以研究深部地壳结构.据三条重力剖面计算得到该地区三个地壳深部结构剖面的结果,给出青藏高原地壳厚度>70 km;喜马拉雅造山带为55 km左右;布拉马普特拉河谷盆地为33~35 km;那加山山脉地区为40~45 km,显示出三者为三个不同的构造单元.同时给出布拉马普特拉构造单元为相对高密度的刚性物质构成,随着印度洋板块向北运移,在碰撞、挤压下,插入青藏高原东南缘一带.导致该地带的强烈构造运动,和频发大、小地震.最后提出了几点认识和建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号