首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major element, trace element and Sr, Nd, Pb and O isotopic data for a Franciscan Mn-deposit suggest an origin by seafloor hydrothermal circulation. Based onQ-mode factor analysis the cherts and Mn-lenses of the Blue Jay mine formed from a combination of 4 components representing 1 biogenic, 1 hydrothermal, and 2 detrital sources. RbSr, UThPb and O isotopic systematics in the Mn-lenses were affected by input from the hydrothermal circulation of material leached from the underlying basalts. Nd isotopic compositions in both cherts and Mn-lenses are identical and within the range measured for Pacific Ocean water suggesting the REE were not mobilized by hydrothermal activity. Correlation of δ18O with SiO2 and MnO2 in the Mn-lenses implies the lenses formed by simple mixing of hydrothermally derived Mn-oxides with seawater and biogenic silica. δ18O of the cherts is both uniform and depleted relative to DSDP Jurassic cherts but similar to microquartz-bearing cherts of the Monterey Formation: this suggests that diagenetic activity exerted more control on oxygen isotope compositions then hydrothermal alteration or metamorphism. Finally, a well defined RbSr isochron of158 ± 5Myr was obtained for these cherts and opens the possibility of determining absolute radiometric ages for similar cherts throughout the geologic record.  相似文献   

2.
At the top of the Lower Permian Maokou Formation limestones are developed carbonaceous cherts(Plm3),which constitute the dominant seleniferous layer of the Yutangba Se deposit.The cherts contain as much Se as 1646×10?6 on average.In addition,they are rich in organic carbon,Al2O3,Si2O,but poor in S.In addition to Se,as well as Mo,Cd,V,and Co,etc are also highly enriched in the cherts.The chert samples are characterized by low ?REE,slight LREE enrichment,relatively heavy Si isotope enrichment,and insignificant variations in ? 30Si value within the range of 1.1‰-1.2‰.Generally,it can be judged from the major element,trace element and REE data and the Si isotopic characteristics that the Yutangba seleniferous cherts were formed in the shallow sea to semi-deep sea anoxic environments and their formation is controlled chiefly by bio-chemical processes.  相似文献   

3.
Major, trace and rare earth elements were measured in 27 samples of the Middle to Late Permian limestones from the Tieqiao section located on the marginal zone of an isolated platform (Laibin, South China). Shale-normalized REE+Y patterns of all samples show notably negative Ce anomalies (0.21–0.66, average 0.33), slightly positive Gd anomalies (1.08–1.30, average 1.20), and positive Y anomalies with superchondritic Y/Ho ratios (36–91, average 55), which are consistent with those of modern shallow seawater. Their relative LREEs enrichment with higher NdSN/YbSN ratios (0.58–1.80) than those of modern shallow seawater (0.21–0.50) suggests complicated sources of REEs for all samples. Compared with geochemical features of sediments influenced by terrigenous particles and hydrothermal fluids, it is concluded that ambient shallow seawater was the primary source of REEs in these limestones. Comparing the indicators of REE+Y elements (ΣREE, NdSN/YbSN, Ce/Ce*, Gd/Gd*, Eu/Eu* and Y/Ho) in limestones with those in bedded cherts from the Tieqiao section, we consider that limestone and bedded chert have similar sources of REE+Y elements: ambient shallow seawater with more or less hydrothermal fluids. In addition, there is a completely negative correlation between CaCO3 and SiO2 contents in limestones and bedded cherts. These results imply that precipitation of CaCO3 was inhibited by that of SiO2 which was derived mainly from hydrothermal fluid, especially in bedded cherts from the Tieqiao section.  相似文献   

4.

The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lowerɛNd(t) (4.52-5.88) with T Nd DM = 1.54-1.92 Ga. Their Nd isotopic compositions and T Nd DM are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.

  相似文献   

5.
Granitoid rocks interspersed with greenstone belts together comprise Archaean cratons throughout the world. The greenstone belts contain a wide variety of volcanic rocks which, despite cyclical variations in composition, generally change from ultramafic komatiites toward the stratigraphic base of the successions, upward through tholeiitic basalts and calc-alkaline andesites, to silici-alkalic rhyodacites toward the top. These extrusive rocks are intruded by rocks of a similar wide compositional range, which are probably comagmatic and subvolcanic to the former. The volcanic rocks are also intercalated with, and flanked by, volcaniclastic and distinctive immature sedimentary strata, including turbiditic greywacke and polymictic conglomerate. All are products of the prolonged volcanism that dominated Archaean supracrustal evolution and metallogenesis.Rare element pegmatites are associated with the Archaean granitic intrusions. Four important types of metalliferous ores, iron-manganese, nickel-chrome, gold-silver and copper-zinc occur in the greenstone belts, often co-regionally with one another in the same mining districts. Algoma type iron-formations of oxide, carbonate, silicate and sulfide facies occur throughout the volcano-sedimentary successions from base suggest common genetic processes for these ores. The Algoma type iron-formations are chemical sedimerare chromite deposits are restricted to the stratigraphically lower, ultramafic komatiites. Important gold ores are hosted primarily in the tholeiitic basalts, particularly where these are intercalated with ankeritic-pyritic chemical sedimentary strata, but smaller gold deposits are also known in stratigraphically lower ultramafic and higher felsic volcanic rocks. The largest massive base metal sulfide deposits occur in the stratigraphically higher felsic rhyodacitic members.The close spatial associations between deposits of these metals in Archaean rocks, particularly those of certain nickel, gold and base metal ores with iron-formation, together with their many similar geological characteristics, suggest common genetic processes for these ores. The Algoma type iron-formations are chemical sedimentary precipitates from ferruginous hydrothermal fluids that were periodically discharged on the sea floor during the prolonged Archaean subaqueous volcanism. The massive base metal deposits are of similar origin, essentially Cu-Zn-rich varieties of sulfide-facies iron-formation. The auriferous cherty, ankeritic or pyritic chemical sedimentary strata were also formed by similar sea floor exhalative hydrothermal activity. Although seldom of mineable gold content themselves, these constituted important, pre-enriched source rocks for later metamorphic generation of gold veins. Although many of the nickel sulfide and chromite bodies are of magmatic generation, others closely associated with iron-formation, and themselves delicately interbedded with cherty or talc-carbonate laminae, may be due to similar sea floor hydrothermal discharge that accompanied ultramafic extrusive activity. Considering their close spatial and genetic links, the occurrence of any one of these four types of deposit suggests the possibility of the others wherever the favourable Archaean host rocks are present.Different Archaean cratons however, have differing proportions of these four types of deposit, and of their distinctive host rocks. Greenstone belts in all cratons throughout the world contain the iron-formations and gold deposits. Greenstone belts of southern Africa and Western Austrialia, however, have more abundant ultramafic rocks and more important nickel-chrome deposits. Some of them may be older than comparable belts in Canada which contain more rhyodacitic rocks and more important copper-zinc ores. Some belts of Brazil and West Africa may be still younger, contain more pyroclastic-volcaniclastic rocks, lack both the nickel-chrome and copper-zinc ores, but contain important manganese in their iron-formations. These relations suggest worldwide diachroneity of Archaean greenstone belt generation, late-Archaean granitic orogeny and ensuing Proterozoic sedimentation.  相似文献   

6.
The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lower?Nd(t) (4.52-5.88) with T Nd DM = 1.54-1.92 Ga. Their Nd isotopic compositions and T Nd DM are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.  相似文献   

7.
Lead isotope data of sulfides and host volcanic rocks from the Bukit Botol and Bukit Ketaya deposits, the two representative deposits of the Tasik Chini volcanic‐hosted massive sulfide (VHMS) deposit, Central Belt of Peninsular Malaysia, are reported. Lead isotope compositions of the associated sulfide minerals and volcanic rocks from the Bukit Botol deposit exhibit homogeneous and less radiogenic values (206Pb/204Pb showing a range of composition from 18.14 to 18.20, 207Pb/204Pb between 15.52 and 15.59 and 208Pb/204Pb from 37.96 to 38.35). Similarly, the Pb isotopic compositions of the host volcanic rocks from the Bukit Ketaya deposit yielded a narrow range to those of the sulfide samples (206Pb/204Pb from 18.04 to 18.20, 207Pb/204Pb between 15.43 and 15.57 and 208Pb/204Pb of 37.96 to 38.30). The uniform Pb‐isotope compositions of the sulfides in the ore horizon and the host volcanic rocks from both deposits suggest a derivation from a similar source reservoir and mineralization processes. In the framework of the tectonic model for the Central Belt of Peninsular Malaysia, both deposits display a range of lead isotopic compositions originated from mixing of bulk crust/juvenile arc and minor mantle sources, which are typical for VHMS deposits in an island arc–back arc setting.  相似文献   

8.
The mineralogy of five groups of hydrothermal chimneys from the East Pacific Rise has been examined. Three of the chimneys, where the exit temperature of the hydrothermal fluids was close to 350°C, are rich in copper sulfides. Exit temperatures from the other two chimneys were less than 300°C; in these, the chimney walls are rich in zinc sulfide. The major sulfides in the chimneys as a whole were found to be wurtzite, chalcopyrite, pyrite, and cubanite. Anhydrite is always the dominant sulfate, and is present in all the deposits. Silicates are also present but in relatively minor amounts. There are considerable differences in the mineralogy of sulfides, sulfates, and silicates between the active and inactive vent deposits.The isotopic composition of sulfur in anhydrites from active vents is close to that of seawater; the δ34S values of the sulfides range from +1.3 to +4.1‰. The isotopic composition of sulfur in the anhydrites is consistent with a derivation predominantly from seawater sulfate. The sulfur in the sulfides must have a complex origin including contributions from both sulfur in basalts and sulfide produced by reduction of sulfate in seawater. Mixing of H2S-dominated hydrothermal fluids with cold seawater near the seafloor resulted in the precipitation of non-equilibrium assemblages of sulfides and sulfates.  相似文献   

9.
This paper considers the geochemistry of volcanogenic mineralization in the northeastern segment of the Pacific Ore Belt (Northeast Russia). We give new evidence for the compositions and concentrations of trace and rare-earth elements (REE) in the ores of volcanogenic fields: Au-Ag epithermal (of various types and ages), Cu-Mo-Au porphyritic, Au-Bi related to granitoidal intrusions, Sn-Ag subvolcanic and kies polymetallic enriched in Au and Ag, as well as REEs in alkaline volcanic rocks. Geochemical signatures have been compiled for 17 formation types of volcanogenic fields. It was found that the ore-forming fluids in most fields belonged to an NaCl-H2O hydrothermal system that was enriched in Cl relative to F; the values of Y/Ho in the ores of nearly all types correspond with the interval of ratios characteristic for present-day hydrothermal fluids in backarc basins; most of the ores that we studied had near-chondrite spectra with configurations similar to those of the REE spectra in volcanic rock sequences of the andesite-diorite series. Comparative analysis of REE spectra in the distribution of trace elements over classes of gold concentration shows synchronous enrichment of ores in similar sets of trace elements. The high Co/Ni ratio in volcanogenic ores probably reflects the superposition of a later magmatic fluid upon an earlier mineralization. Samples from ores of volcanogenic fields, except for Kuroko, show δCe and δEu varying from negative to mildly positive values, thus indicating low-oxidizing conditions during deposition. It was found for Au-Ag epithermal ores that they are enriched in a wide range of trace elements; they have low concentrations of REEs, the light REEs are more abundant than the heavy ones, and the Eu anomalies vary considerably from small negative to low and high positive values. The results provide evidence of an exhalation hydrothermal origin of the Khotoidokh field. It has been shown that the REEs in the ores of the Bol’shoe field are of the type that is most valuable to industry. The results can be used to deal with practical problems: determining the formation type and evaluating the industrial value of a field; detecting accessory components in ores; and discriminating between the types of geochemical anomalies (in rocks or in soil) and stray fluxes as to the potential of a field.  相似文献   

10.
The REE geochemistry of accessory allanites, sphenes. apatites and zircons from a range of granitic, sedimentary and hydrothermally altered rocks from Skye has been investigated using the electron microprobe. Allanites and sphenes in Skye Tertiary granites are extremely LREE enriched (CeN/YN= 40–100) and may contain up to 50% of whole rock LREE (La-Nd). These phases are late crystallisation products of redidual magmatic fluids. Earlier-formed apatites (CeN/YbN = 7.33) and zircons (CeN/YbN = 0.05) contain insufficient REE to have influenced the REE geochemistry of the Western Red Hills granites by crystal fractionation. However, Y-, Th- and HREE-rich zircons (CeN/YbN = 0.03–0.12, ΣREE + Y = 16,500–49,500ppm) occur both as detrital grains in Skye Torridonian sediments and in the Coire Uaigneich Granophyre (CUG), suggesting bulk involvement of these sediments in CUG petrogenesis. Hydrothermal allanites in altered Tertiary igneous rocks from Skye are LREE enriched (CeN/YN = 16–920), whilst allanites formed during alteration of Torridonian arkoses have less fractionated REE patterns (CeN/YN = 4.4–1.0), as the instability of metamict HREE-rich detrital zircons buffered the hydrothermal fluids in these rocks to more HREE-rich compositions. This buffering indicates that within unveined rocks the scale of REE mobility during hydrothermal alteration was small, even though the occurrence of allanite in hydrothermal veins on Skye suggests that LREE may have been transported for some distance by meteoric-hydrothermal fluids. Zoning of the REE within individual hydrothermal and metamorphic allanites (e.g. coreCeN/YN = 97.56, rim CeN/YN = 0.22) suggests evolution of their parent geological fluids to more HREE-rich compositions during allanite growth.  相似文献   

11.
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".  相似文献   

12.
The study on marine hydrothermal sedimentationtends to be perfect at present, and a suit of hydrother-mal sedimentary distinguishing criterions (includingstructure, conformation, geochemistry, etc.) has beenfound[1—12]. While it is unsubstantial on the study ofhydrothermal sedimentation in continental deposi-tional environment, and little was known about therelation between continental hydrothermal sedimenta-tion and metal mineralization. The Lincang Ge deposit,hosted in coal with independent…  相似文献   

13.
The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The orogen initiated from the rifting of the Late Proterozoic Rodinia, and then it experi-enced stages of Cambrian rift basin and Ordovician archipelagic oceanic basin, and foreland basin during Silurian to Early-Middle Devonian. The average ratios of Al/(Al Fe Mn), Al/(Al Fe), δ Ce, Lan/Ybn and Lan/Cen from cherts of Cambrian Heicigou Formation are 0.797, 0.627, 1.114, 0.994 and 1.034 re-spectively. In the NAS standardized REE distribution pattern, the cherts from Xiangqianshan is slightly HREE enriched, and the cherts from Ganluci and Shiqingdong are plane. All of these features indicated that Cambrian cherts of the Heicigou Formation originated from a continental margin rift background. On the contrary, the average ratios of Al/(Al Fe Mn), Al/(Al Fe), δ Ce, Lan/Ybn, Lan/Cen of the Ordovician chert from Dakecha, Cuijiadun, Shihuigou, Laohushan, Heicigou, Maomaoshan, Bianmagou, Da-chadaban, Baiquanmen, Jiugequan and Angzanggou, are respectively 0.72, 0.58, 0.99, 1.09 and 0.96 respectively. Their NAS standardized REE distribution patterns of most Ordovician cherts are plane mode or slightly HREE enriched. The REE distribution pattern of few samples of cherts are slightly LREE enriched. Characteristics of sedimentary geochemistry and tectonic evolution demonstrated that the Cambrian-Ordovician cherts, associated with rift, oceanic, island arc and back-arc volcanic rocks, was not formed in a typical abyssal oceanic basin or mid-oceanic ridge. On the contrary, they formed in a deepwater basin of continental margin or a archipelagic ocean tectonic setting. Several Early Paleo-zoic ophiolite belts in North Qilian and adjacent periphery Qaidam microplate imply that an archipelagic ocean during Ordovician existed in the east of Pro-Tethys.  相似文献   

14.

This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H-and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.

  相似文献   

15.
Analyses of rare earth and trace element concentrations of native sulfur samples from the Kueishantao hydrothermal field were performed at the Seafloor Hydrothermal Activity Laboratory of the Key Labo-ratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences. Using an Elan DRC II ICP-MS, and combining the sulfur isotopic compositions of native sulfur samples, we studied the sources and formation of a native sulfur chimney. The results show, when comparing them with native sulfur from crater lakes and other volcanic areas, that the native sulfur content of this chimney is very high (99.96%), the rare earth element (REE) and trace element constituents of the chimney are very low (ΣREE<21×10?9), and the chondrite-normalized REE patterns of the native sulfur samples are similar to those of the Kueishantao andesite, implying that the interaction of subseafloor fluid-andesite at the Kueishantao hydrothermal field was of short duration. The sulfur isotopic compo-sitions of the native sulfur samples reveal that the sulfur of the chimney, from H2S and SO2, originated by magmatic degassing and that the REEs and trace elements are mostly from the Kueishantao ande-site and partly from seawater. Combining these results with an analysis of the thermodynamics, it is clear that from the relatively low temperature (<116 ℃ ), the oxygenated and acidic environment is favorable for formation of this native sulfur chimney in the Kueishantao hydrothermal field.  相似文献   

16.
This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H-and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.  相似文献   

17.
Here we report a detailed trace element study of the cherts from Liuchapo Formation, which is a terminal Ediacaran (551-542 Ma) succession in South China deposited in deep-water basinal setting. The REE of Liuchapo cherts shows similar features as observed for anoxic modern seawater (but not for hydrothermal fluids), characterized by positive La anomaly (LaN/CeN = 0.83–1.91, average 1.37), moderately negative Ce anomaly (0.53–1.1, average 0.73), positive Gd anomaly (average 1.08), positive Y anomaly (average 1.21), and depleted LREE and MREE. In addition, the Liuchapo cherts have low ΣREE (3.36–56.13 ppm, average 20.6 ppm), low Al2O3, Ti, Th and Zr concentrations, and high Y/Ho ratios (up to 43.9). The redox-sensitive trace elements concentrations in the cherts do not correlate with detrital input proxies. All of these features suggest that the redox-sensitive trace elements in the cherts were authigenically concentrated in water column and their concentrations thus are excellent indicators of ancient redox conditions. Very low Th/U ratios, high V/(V+Ni) and Fe/Al ratios, enrichments of redox-sensitive trace elements (U, V, Mo), and low concentration of Mn in the cherts imply anoxia in the deep seawater. Our data reveal that the terminal Ediacaran ocean was not completely oxidized and the deep ocean was still anoxic, at least in South China. We propose that although the oxidative events existed in the terminal Ediacaran oceans, decomposition of organic matter prolonged anoxia in the deep ocean. Supported by National Natural Science Foundation of China (Grants Nos. 40532012, 40873007, 40603021) and Chinese Academy of Sciences (Grant No. KZCX3-SW-141)  相似文献   

18.
Re-Os dating on copper-nickel sulfide ores from the Baotan area, Guangxi, yielded an ore-forming age of 982 ± 21 Ma (2σ), which demonstrates that copper-nickel sulfide deposits and their related mafic-ultramafic rocks occurred in the same period of time with the ophiolites in northeastern Jiangxi. Both of them are the products of collision-convergence between the Cathaysian plate and Yangtze plate and the subsequent extensional environment. Calculation of the γOs of the 982 Ma copper-nickel sulfide ores and its correlation with Re/Os indicate that injection-type massive ores display lower γOs values (-15.6 to -8.2) and lower Re/Os ratios (0.32 to 0.43), while basal liquation-type ores have γOs-27.9 to -7.3 and Re/Os=5.36 to 11.24. This suggests that these copper-nickel sulfide ores and their related mafic-ultramafic rocks were derived from a Re-depleted mantle source and that contamination with some crustal material occurred during their intrusion.  相似文献   

19.
Carbonatites are rarely igneous rocks distributed on the earth. The rocks usually form ring complexes with alkalic rocks, occurring in the environments of continental rift, collisional oro-genic zone and oceanic island[1, 2]. Numerous facts and experiment…  相似文献   

20.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号