首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rhodamine dye tracer study was conducted over eight tidal cycles to investigate mixing and tidal exchange processes in Perch Pond, a Cape Cod embayment subject to recurrent blooms of the toxic dinoflagellate, Gonyaulax tamarensis. Dye injected at the inlet to Perch Pond during flood tide became well-mixed within the pond in one day and was removed at an effective first order rate of 0.36 d?1, equivalent to a 70% utilization of the maximum possible tidal exchange. This relatively high flushing efficiency can be attributed to a density-driven circulation within the pond, consisting of a subsurface inflow of high salinity dense water on the flood tide followed by removal of lighter surface layers through the shallow inlet during ebb tide. The formation of a frontal convergence near the inlet on flood tide is consistent with the observed distribution of G. tamarensis cysts and shelifish toxicity. It is also clear that phytoplankton like G. tamarensis, whose maximum growth rates approximate the rate of tidal flushing, can only bloom within the embayment by avoiding the outflowing surface waters. Mixing within the pond is probably less efficient and population losses greater during dry periods when the pond salinity is higher and the stratification weaker.  相似文献   

2.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

3.
The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 238U238U activity ratios.The 238U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, σ Na + K + Mg + Ca, and with the HCO3? ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. These findings lead us to conclude that 238U is brought into the aqueous phase along with major cations and bicarbonate. The strong positive correlation between 238U and total dissolved salts for selected rivers of the world yield an annual dissolved 238U flux of 0.88 × 1010g/yr to the oceans, a value very similar to its removal rate from the oceans, 1.05 × 1010g/yr, estimated based on its correlation with HCO3? contents of rivers.In the estuaries, both 238U and its great-grand daughter 234U behave conservatively beyond chlorosities 0.14 g/l. These data confirm our earlier findings in other Indian estuaries. The behavior of uranium isotopes in the chlorosity zone 0.02–0.14 g/l, was studied in the Narbada estuary in some detail. The results, though not conclusive, seem to indicate a minor removal of these isotopes in this region. Reexamination of the results for the Gironde and Zaire estuaries (Martin et al., 1978a and b) also appear to confirm the conservative behavior of U isotopes in unpolluted estuaries. It is borne out from all the available data that estuaries beyond 0.14 g/l chlorosities act neither as a sink nor as a source for uranium isotopes, the behavior in the low chlorosity zones warrants further detailed investigation.A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238U concentration of 0.22 μg/l with a 234U238U activity ratio of 1.20 ± 0.06ismissing. The residence time of uranium isotopes in the oceans estimated from the 238U concentration and the 234U238U A. R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234U flux of about 0.25 dpm/cm2·103 yr into the oceans (about 20% of its river supply) is necessitated.  相似文献   

4.
Calico Creek differs from neighboring estuaries in that it receives sewage effluent, and its waters therefore contain ample nutrients. High nutrient levels enable the phytoplankton population, which is probably light-limited, to reach densities of 109 cells·1?1 during the summer, 2 to 3 orders of magnitude higher than the surrounding, nutrient-limited populations. At cell densities greater than 108 cells·1?1 the number of dominant species is greatly reduced, and the level of diversity drops sharply. Calico Creek also differs by being very shallow; the population can be drastically affected by high runoff. The productivity of both the phytoplankton and the surroundingSpartina marsh is much higher than the neighboring unpolluted estuaries. Unlike the larger and more stable estuaries nearby, the dependence of the population on the effluent for nutrients, the possibility of toxic materials entering the creek with the effluent, and its small size make Calico Creek subject to sudden change.  相似文献   

5.
Particulate organic carbon (POC), dissolved organic carbon (DOC), and plant pigments (chlorophylls and carotenoids) were measured approximately bimonthly from March 1992 to October 1993 in the Sabine-Neches estuary (Sabine Lake region), located on the Texas-Louisiana border. High freshwater inflow into this shallow turbid estuary results in the shortest hydraulic residence time (ca. 7 d) of all Texas estuaries (Baskaran et al. in press). Annual averages of chlorophyll-a (3.0 μg l?1) and particulate organic carbon (1.1 mg l?1) in the water column were extremely low in comparison to other shallow estuaries. The highest chlorophyll-a concentrations were observed in October 1993, in the mid and lower regions of the estuary, during the lowest river discharge. Zeaxanthin and fucoxanthin concentrations suggested that much of the chlorophyll-a during this low flow period was represented by cyanobacteria and diatoms that entered from the Gulf of Mexico. The range of DOC concentrations was generally high (4.4–20.9 mg l?1) and were significantly correlated with POC, but not with chlorophyll-a concentrations. When total suspended particulate (TSP) concentrations were below 20 to 30 mg l?1, there were significant increases in %POC and %PON of the TSP. The unusually high POC: chlorophyll-a ratios (highest value of 1423) suggested that much of the POC contained low concentrations of chlorophyll-a that had degraded during transport from wetlands in the Sabine and Neches rivers. Based on these data, this estuary can be characterized as a predominantly heterotrophic system, with low light penetrance, short particle-residence times, high DOC, and low inputs from autochthonous carbon sources.  相似文献   

6.
Characteristics of Danish estuaries   总被引:2,自引:0,他引:2  
We review various aspects of the structure and functioning of Danish estuaries from data collected by the National Monitoring Program and from information in published sources. We present data on the physical, chemical, and biological characteristics of estuaries in Denmark, we evaluate the functioning of these systems as filters and transformers of nutrients and we evaluate the outlook for Danish estuaries in the future. Danish estuarine systems are for the most part shallow (<3 m deep), have short residence times, and tend to be heavily loaded with nutrients primarily from agricultural sources. Total average loads from land per unit watershed area are 112 kg P km?2 yr?1 and 2,400 kg N km?2 yr?1 during the period 1989–1995. The total phosphorus (TP) load in estuaries has been significantly reduced over the last decade, following implementation of the 1987 Action Plan for the Aquatic Environment (Vandmiljøplan in Danish) that prescribed that nitrogen loads to the total aquatic environment should be reduced by 50% and phosphorus loads by 80%. Reductions in the total nitrogen (TN) load have been more modest. Nutrient loading is one of the primary determinants of estuarine nutrient concentration with 70% of the annual variation in TN concentration and 55% of the annual variation in TP concentration explained by variation in the load. Many Danish estuaries have rich communities of macrophytes and benthic filter feeders, such asMytlis edulis andCiona intestinalis, that can control water column chlorophyll concentrations by their filter feeding activities. Many of the estuaries experience hypoxia and anoxia, especially during warm and calm summer months. Further reductions in nutrient loading are expected following implementation of the Action Plan for the Aquatic Environment II, with predicted improvements in oxygen concentrations and in the functioning of these shallow, dynamic estuarine systems.  相似文献   

7.
The toxicPfiesteria complex are a group of dinoflagellates that have received considerable attention in recent years as causative factors in fish kill or lesion events in North Carolina estuaries and in the Pocomoke River of Chesapeake Bay. In response to the potentialPfiesteria threat, the South Carolina Task Group on Harmful Algae was formed in late 1997 and implemented programs to monitor harmful algal blooms and respond to fish kills or lesion events with particular emphasis on the Bushy Park (Cooper River, Charleston) region, a site of annually recurrent menhaden lesion events.Pfiesteria piscicida, Pfiesteria shumwayae, andCryptoperidiniopsis spp. were documented in South Carolina estuaries. Routine monitoring and fish kill or lesion event sampling consistently indicated low abundances compared to estimates from similar programs in North Carolina and Maryland that sampled areas with a history ofPfiesteria toxic activity. The finding thatPfiesteria-like organism (PLO) abundances were always low in samples collected during menhaden lesion events in Bushy Park suggested other causes for lesion progression, althoughPfiesteria spp. could not be ruled out as a factor in lesion initiation. Based on the previously demonstrated positive relationship between PLO abundance, chlorophylla, and inorganic nutrient concentrations (in laboratory experiments and North Carolina field observations), we hypothesized that the relatively low abundance ofPfiesteria spp. and other PLO (e.g.,Cryptoperidiniopsis) in South Carolina estuaries is related to the relatively low supply of phytoplankton prey, as supported by interstate comparisons in chlorophylla concentrations. Nitrate concentrations were generally much lower in South Carolina estuaries. Estuarine eutrophication may be an important consideration in explaining interstate differences in susceptibility toPfiesteria-related toxic events.  相似文献   

8.
In shallow estuaries with strong river influence, the short residence time and pronounced gradients generate an environment for plankton that differs substantially in its dynamics from that of the open ocean, and the question arises “How is phytoplankton biomass affected?” This study assesses the small-scale spatial and temporal distribution of phytoplankton in Apalachicola Bay, a shallow bar-built estuary in the Florida Panhandle. Phytoplankton peaks were characterized to gain insights into the processes affecting spatial heterogeneity in biomass. Chlorophyll a (Chl a) distribution at 50-m spatial resolution was mapped using a flow-through sensor array, Dataflow©, operated from a boat that sampled four transects across the bay every 2 weeks for 16 months. Chl a peaks exceeding background concentrations had an average width of 1.3?±?0.7 km delineated by an average gradient of 3.0?±?6.0 μg Chl a L?1 km?1. Magnitude of E-W wind, velocity of N-S wind, tidal stage, and temperature affected peak characteristics. Phytoplankton contained in the peaks contributed 7.7?±?2.7% of the total integrated biomass observed along the transects during the study period. The river plume front was frequently a location of elevated Chl a, which shifted in response to river discharge. The results demonstrate that despite the shallow water column, river flushing, and strong wind and tidal mixing, distinct patchiness develops that should be taken into consideration in ecological studies and when assessing productivity of such ecosystems.  相似文献   

9.
In order to examine the variations in concentrations of dimethylsulfide (DMS) and its fluxes to the atmosphere, 25 major and medium estuaries from Indian subcontinent were sampled during wet and dry periods. River discharge brought substantial amount of nutrients and suspended particulate matter (SPM) to the Indian estuaries; however, the concentration of phytoplankton biomass was severely limited by latter due to shallowing of photic depth. Bacillariophyceae was the dominant phytoplankton group in the Indian estuaries followed by green algae, Cyanophyceae, and Dinophyceae. Relatively higher concentrations of DMS were observed in the estuaries located along the east (3.6 ± 5.7 nM) than the west coast of India (0.8 ± 0.3 nM) during wet period whereas no significant differences were observed during dry period. The concentrations of DMS were significantly lower during wet than dry period and it was consistent with the phytoplankton biomass. The slope of the relation between DMS and phytoplankton biomass displayed a significant spatial variation due to contribution of different groups of phytoplankton in the Indian estuaries. The concentrations of DMS in the Indian estuaries were higher than other estuaries in the world except some Chinese estuaries. The annual mean flux (1.95 ± 2.5 μmol m?2 day?1) from the Indian estuaries is lower than that of other estuaries in the world, except Pearl River estuary due to inhibition of phytoplankton growth by suspended load and low flushing rates.  相似文献   

10.
The frequency distribution of zinc concentrations in a population of mussels (Mytilus edulis) from the moderately polluted Tyne estuary showed marked positive skewness. A peak was reached between 3 and 4 μmoles per dry gram of whole soft tissue followed by a long tail ending with a single exceptional value of 20.5 μmoles per g. The mean zinc concentration for the population was 5.13±2.66 (standard deviation). The skewness (g1) value was 1.78 (SE+0.14 p?0.001). Within the population, there was a strong positive association between the log mean zinc concentration of a single collection and the log variance of the collection. The significance of this for biomonitoring procedures is discussed.  相似文献   

11.
Southwestern Atlantic estuaries (Southern Brazil to Northern Patagonia, Argentina) are characterized by the presence of an intertidal burrowing crab Chasmagnathus granulata. This crab species is an important bioturbator which lives in large assemblages and excavates semi-permanent burrows that affect sediment characteristics. Our observations showed that distribution of the crabs in the Mar Chiquita coastal lagoon, Argentina (37°45′S, 57°26′W) affected habitat use and feeding success of migratory shorebirds. During the migratory season the two-banded plover (Charadrius falklandicus) foraged more frequently inside crab beds, and yellowlegs (Tringa flavipes and T. melanoleuca) fed more freqeuntly outside crab beds. Focal observations on the feeding behavior of the white-rumped sandpiper (Calidris fuscicollis) and the two-banded plover inside and outside crab beds showed that the plover was a visual searcher and captured more prey inside crab beds, and the white-rumped sandpiper was a tactile feeder. Although consumption rates (prey min?1) did not differ between sites, their efficiency (prey probe?1) inside crab beds was less. These differences were probably related to changes in sediment characteristics and prey behavior, which vary with crab activity. Burrowing crabs alter the suitability of intertidal habitats used by shorebirds in southwestern Atlantic estuaries. We believe that the same process could be occurring with other burrowing curstaceans such as thalassinidean shrimps in other estuaries of the world and could have important implications for management of flats for shorebirds. *** DIRECT SUPPORT *** A01BY090 00007  相似文献   

12.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   

13.
Tidal marshes act as a buffer system for nutrients in the pore water and play important roles in controlling the budget of nutrients and pollutants that reach the sea. Spatial and seasonal dynamics of pore water nutrients were surveyed in three tidal marshes (Chongming Island, Hengsha Island, and Fengxian tidal flat) near the Yangtze Estuary and Hangzhou Bay from August 2007 to May 2008. Nutrient variations in pore water closely followed seawater quality in the estuaries, while the average concentration of NH4 +–N, the main form of inorganic nitrogen in pore water, was over two orders of magnitude higher than that in seawater which was dominated by nitrate. NH4 +–N export (13.81 μmol m?2 h?1) was lower than the import of (NO3 ?+NO2 ?)–N (?24.17 μmol m?2 h?1) into sediment over the 1-year period, hence reducing N-eutrophication in coastal waters. The export of SiO3 2?–Si and PO4 3?–P from tidal marshes regulated nutrient level and composition and lifted the ratio beyond potentidal element limitation in the coastal system. Moreover, macrophyte plants (Spartina alterniflora and Phragmites australis) played significant roles in controlling nutrient concentration in pore water and its exchange between marshes and estuaries. Fengxian marsh was characterized by higher nutrient concentrations and fluxes than other marshes in response to the more serious eutrophication in Hangzhou Bay than in the Yangtze Estuary.  相似文献   

14.
The seasonal abundance and spatial distribution of eggs and early larvae of the bay anchovy,Anchoa mitchilli, and the weakfish,Cynoscion regalis, were determined from plankton collections taken during 1971–1976 in the lower Chesapeake Bay. Eggs and larvae of the bay anchovy,Anchoa mitchilli, dominated the ichthyoplankton, making up 96% of the total eggs and 88% of all larvae taken. A comparison of egg and larval densities from the lower Chesapeake Bay to existing data from other East Coast estuaries suggested that Chesapeake Bay is a major center of spawning activity for this species.Anchoa mitchilli spawning commenced in May when mean water column temperatures approached 17°C and abruptly ceased after August. Eggs and early larvae presented a continuous distribution throughout the study area during these months. Eggs and larvae of several sciaenid species, especiallyC. regalis, ranked second in numerical abundance. Larval weakfish were consistently taken in late summer of each sampling year but peak abundance and distribution was observed in August 1971. Sciaenid eggs exhibited a distinct polyhaline distribution with greatest concentrations observed at the Chesapeake Bay entrance or along the Bay eastern margin. Analysis of sciaenid egg morphometry and larval occurrence suggested spawning activity of at least four species. Additional important species represented by eggs and/or larvae in the lower Chesapeake Bay wereHypsoblennius hentzi, Gobiosoma ginsburgi, Trinectes maculatus, Symphurus plagiusa andParalichthys dentatus with the remaining species occurring infrequently.  相似文献   

15.
Complex intertidal habitats characteristic of northeastern Pacific coastal estuaries provide critical nursery environments for young-of-the-year Dungeness crab,Cancer magister, yet their role in supporting subsequent year classes remains unclear. SubadultC. magister (40–130 mm; 1+ and >1+ year classes), which reach densities as high as 4,300 crabs ha?1 in subtidal channels during low tides, migrate during flood tides from subtidal refuges into intertidal habitats to forage. As with other brachyuran species that undertake extensive tidally-driven migrations, intertidal foraging may contribute significantly to the energy budget of subadultC. magister. In order to explore the energetic incentive for intertidal migrations by subadult crabs, we developed an ontogenetically-based bioenergetics model for crabs within Willapa Bay, Washington. The model showed that energetic demand varied spatially across the bay, with the highest average energetic demand of a population of subadult crabs (2.13×106 kJ ha?1) occurring in a habitat stratum termed lower side channel (LSC) and characterized by relatively little subtidal area and extensive intertidal flats. Comparison of model results with subtidal prey production revealed that the latter could not satisfy subadultC. magister energetic demands, especially in LSC where modeled crab predation depleted subtidal prey biomass within 17 simulation days. We estimate that 1 ha of subtidal crabs from LSC would minimally require an additional 1.6 ha of intertidal area to satisfy energetic demands without depleting prey biomass. Our model results support the assertion thatC. magister make regular migrations to forage on productive intertidal flats, and suggest that intertidal foraging may contribute significantly to the diet of subadult crabs in coastal estuaries.  相似文献   

16.
We examined high frequency fluctuations in water quality parameters in two tropical coastal plain estuaries in response to changing tidal flow conditions. The variability in total suspended sediments (TSS), volatile suspended solids (VSS), total organic carbon (TOC) concentrations, and indicators of water quality, including pH, temperature, salinity, and dissolved oxygen, over one spring tidal cycle during the early wet monsoon season was measured in two estuaries in eastern Sumatra. The relatively high rainfall experienced throughout the year, in combination with the recent extensive vegetation clearing and modification of the landscape, resulted in significant concentrations of TSS, VSS, and TOC being discharged to coastal waters. Maximum values are reached on the ebb tide (TSS > 1,013 mg l−1; VSS > 800 mg l−1; TOC >60 mg l−1). The influence of freshwater discharge and tidal flow on water properties of the lower estuaries is also marked by the variability in salinity, dissolved oxygen, and pH over the tidal cycle, with minimum values for each of these parameters following maximum current velocities and after the completion of the strong ebb tide. Estimation of seaward sediment fluxes, which are of significant interest in a region where rapid environmental change is occurring, would require further examination of sedimentary processes, such as resuspension and advection of sediment, as well as a consideration of neap-spring tidal variations and the effect of seasonality on estuarine circulation.  相似文献   

17.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

18.
The relative abundance of diatom species in different habitats can be used as a tool to infer prior environmental conditions and evaluate management decisions that influence habitat quality. Diatom distribution patterns were examined to characterize relationships between assemblage composition and environmental gradients in a subtropical estuarine watershed. We identified environmental correlates of diatom distribution patterns across the Charlotte Harbor, Florida, watershed; evaluated differences among three major river drainages; and determined how accurately local environmental conditions can be predicted using inference models based on diatom assemblages. Sampling locations ranged from freshwater to marine (0.1–37.2 ppt salinity) and spanned broad nutrient concentration gradients. Salinity was the predominant driver of difference among diatom assemblages across the watershed, but other environmental variables had stronger correlations with assemblages within the subregions of the three rivers and harbor. Eighteen indicator taxa were significantly affiliated with subregions. Relationships between diatom taxon distributions and salinity, distance from the harbor, total phosphorus (TP), and total nitrogen (TN) were evaluated to determine the utility of diatom assemblages to predict environmental values using a weighted averaging-regression approach. Diatom-based inferences of these variables were strong (salinity R 2?=?0.96; distance R 2?=?0.93; TN R 2?=?0.83; TP R 2?=?0.83). Diatom assemblages provide reliable estimates of environmental parameters on different spatial scales across the watershed. Because many coastal diatom taxa are ubiquitous, the diatom training sets provided here should enable diatom-based environmental reconstructions in subtropical estuaries that are being rapidly altered by land and water use changes and sea level rise.  相似文献   

19.
Concentrations of nutrients (NO3 ?, NO2 ?, NH4 +, PO4 3?, and dissolved SiO2) were examined in three North China estuaries—the Luanhe, Shuangtaizihe, and Yalujiang. These riverine-estuarine systems provide distinct geographic and hydrodynamic conditions, that is, a shallow water zone embraced by shoals and sandbars (Luanhe), the confluence of two streams in the upper estuary with different water and sediment loads, and a turbidity maximum in the upper estuarine mixing zone (Yalujiang). Nutrient element concentrations in these rivers are high in comparison with large, less disturbed systems but similar to those from polluted and/or eutrophic European and North American rivers. This is attributed to intensive weathering and erosion and extensive use of chemical fertilizers. In the fresh-marine waters mixing zone, nutrient species can behave either conservatively or nonconservatively, or both. Wherever nonconservative behaviours of nutrient elements are observed, remobilization from solid phases is probably the predominant mechanism. The extrapolation of dilution curves to the fresh water end-members gives estimated riverine concentrations, which can be between two and ten times higher than those from field observations. Taking into account the high N:P ratios (102–104) from North China rivers and very low concentrations of nitrogen species in the Northwest Pacific coastal oceans (e.g., Yellow Sea), the estuaries in this study may act as regions in which production is limited by phosphorus to regions in which production is limited by nitrogen.  相似文献   

20.
Phytoplankton chlorophyll a concentration, biovolume, cell diameter, and species composition differed across the narrow, low salinity zone between 0.6‰ to 4‰ and may influence copepod food availability in the northern San Francisco Bay Estuary. The highest chlorophyll a concentrations (range 3.2–12.3 μg 1?1), widest cell diameters (>5 μm diam), highest diatom densities and highest production rates of >10 μm diam cells occurred at the landward edge of the salinity zone in April during a strong spring tide and May during a strong neap tide. Near optimum predator/prey ratios, large prey estimated spherical diameters, and high chlorophyll a concentrations suggest these phytoplankton communities provided good food quantity and quality for the most abundant copepods, Eurytemora affinis, Sinocalanus doerrii, and Pseudodiaptomus forbesi. At the center of the zone, chlorophyll a concentrations, diatom densities, and production rates of >10 μm diam cells were lower and cell diameters were smaller than upstream. Downstream transport was accompanied by accumulation of phytoplankton with depth and tide; maximum biomass occurred on spring tide. The lowest chlorophyll a concentrations (1.4–3.6 μg 1?) and consistently high densities (3,000–4,000 cells ml?1) of <5 μm diam cells occurred at the seaward edge of the zone, where the green alga Nannochloris spp. and the bluegreen alga Synechococcus spp. were the most abundant phytoplankton. Low chlorophyll a concentrations and production rates of >10 μm diam cells, small prey estimated spherical diameters, and high predator/prey ratios suggested the seaward edge of the zone had poor phytoplankton food for copepodids and adult copepods. The seaward decrease in phytoplankton chlorophyll a concentration and cell diameter and shift in species composition in the low salinity zone were probably a function of an estuary-wide decrease in chlorophyll a concentration, cell diameter, and diatom density since the early 1980s that was enhanced in the low salinity zone by clam herbivory after 1987. *** DIRECT SUPPORT *** A01BY090 00008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号