首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Darreh‐Zereshk (DZ) and Ali‐Abad (AB) porphyry copper deposits are located in southwest of the Yazd city, central Iran. These deposits occur in granitoid intrusions, ranging in composition from quartz monzodiorite through granodiorite to granite. The ore‐hosting intrusions exhibit intense hydrofracturing that lead to the formation of quartz‐sulfide veinlets. Fluid inclusions in hydrothermal quartz in these deposits are classified as a mono‐phase vapor type (Type I), liquid‐rich two phase (liquid + vapor) type (Type IIA), vapor‐rich two phase (vapor + liquid) type (Type IIB), and multi‐phase (liquid + vapor + halite + sylvite + hematite + chalcopyrite and pyrite) type (Types III). Homogenization temperatures (Th) and salinity data are presented for fluid inclusions from hydrothermal quartz veinlets associated with potassic alteration and other varieties of hypogene mineralization. Ore precipitation occurred between 150° to >600°C from low to very high salinity (1.1–73.9 wt% NaCl equivalent) aqueous fluids. Two stages of hydrothermal activity characterized are recognized; one which shows relatively high Th and lower salinity fluid (Type IIIa; Th(L‐V) > Tm(NaCl)); and one which shows lower Th and higher salinity (Type IIIb; Th(L‐V) < Tm(NaCl)). The high Th(L‐V) and salinities of Type IIIa inclusions are interpreted to represent the initial existence of a dense fluid of magmatic origin. The coexistence of Type IIIb, Type I and Type IIB fluid inclusions suggest that these inclusions resulted either from trapping of boiling fluids and/or represent two immiscible fluids. These processes probably occurred as the result of pressure fluctuations from lithostatic to hydrostatic conditions under a pressure of 200 to 300 bar. Dilution of these early fluids by meteoritic water resulted in lower temperatures and low to moderate salinity (<20 wt% NaCl equiv.) fluids (Type IIA). Fluid inclusion analysis reveals that the hydrothermal fluid, which formed mineralized quartz veinlets in the rocks with potassic alteration, had temperatures of ~500°C and salinity ~50 wt% NaCl equiv. Cryogenic SEM‐EDS analyses of frozen and decrepitated ore‐bearing fluids trapped in the inclusions indicate the fluids were dominated with NaCl, and KCl with minor CaCl2.  相似文献   

2.
The Chehugou Mo–Cu deposit, located 56 km west of Chifeng, NE China, is hosted by Triassic granite porphyry. Molybdenite–chalcopyrite mineralization of the deposit mainly occurs as veinlets in stockwork ore and dissemination in breccia ore, and two ore‐bearing quartz veins crop out to the south of the granite porphyry stock. Based on crosscutting relationships and mineral paragenesis, three hydrothermal stages are identified: (i) quartz–pyrite–molybdenite ± chalcopyrite stage; (ii) pyrite–quartz ± sphalerite stage; and (iii) quartz–calcite ± pyrite ± fluorite stage. Three types of fluid inclusions in the stockwork and breccia ore are recognized: LV, two‐phase aqueous inclusions (liquid‐rich); LVS, three‐phase liquid, vapor, and salt daughter crystal inclusions; and VL, two‐phase aqueous inclusions (gas‐rich). LV and LVS fluid inclusions are recognized in vein ore. Microthermometric investigation of the three types of fluid inclusions in hydrothermal quartz from the stockwork, breccia, and vein ores shows salinities from 1.57 to 66.75 wt% NaCl equivalents, with homogenization temperatures varying from 114°C to 550°C. The temperature changed from 282–550°C, 220–318°C to 114–243°C from the first stage to the third stage. The homogenization temperatures and salinity of the LV, LVS and VL inclusions are 114–442°C and 1.57–14.25 wt% NaCl equivalent, 301–550°C and 31.01–66.75 wt% NaCl equivalent, 286–420°C and 4.65–11.1 wt% NaCl equivalent, respectively. The VL inclusions coexist with the LV and LVS, which homogenize at the similar temperature. The above evidence shows that fluid‐boiling occurred in the ore‐forming stage. δ34S values of sulfide from three type ores change from ?0.61‰ to 0.86‰. These δ34S values of sulfide are similar to δ34S values of typical magmatic sulfide sulfur (c. 0‰), suggesting that ore‐forming materials are magmatic in origin.  相似文献   

3.
The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite–monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite–actinolite–apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz–sericite–pyrite), and propylitic (chlorite–epidote–carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper–gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite–actinolite–apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5–45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104–450 °C) and salinity (4.2–46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu–Ag–U–Zn–Co–Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by boiling, mixing with cooler low-salinity meteoric water, and simple cooling. The evidence is consistent with emplacement of the source plutons and stocks into an epithermal environment within ~1 km of surface. This generated near-surface high-temperature alteration in a dynamic hydrothermal system that collapsed (telescoped) resulting in widespread evidence of boiling and epithermal mineralization superimposed on earlier stages of alteration.  相似文献   

4.
The late Triassic Baolun gold deposit hosted by Silurian phyllites is a large‐scale high‐grade gold deposit in Hainan Island, South China. The ores can be classified into quartz‐vein dominated type and less altered rock type. Three mineralization stages were recognized by mineral assemblages. The early stage, as the most important mineralization stage, is characterized by a quartz–native gold assemblage. The muscovite?quartz?pyrite?native gold assemblage is related to the intermedium mineralization stage. In late mineralization stage, native gold and Bi‐bearing minerals are paragenetic minerals. Microthermometry analyses show that the early mineralization stage is characterized by two types of fluid inclusions, including CO2‐rich inclusions (C‐type) and aqueous inclusions (W‐type). C‐type inclusions homogenize at 276–335°C with an averaged value of 306°C and have salinities of 1.0–10.0 wt% NaCl equivalent (mean value of 4.9 wt% NaCl equivalent). W‐type inclusions homogenize at 252–301°C (mean value of 278°C) with salinity of 4.0–9.7 wt% NaCl equivalent (mean value of 7.4 wt% NaCl equivalent). In intermedium mineralization stage, C‐type and W‐type inclusions homogenize at 228–320°C (mean value of 283°C) and 178–296°C (mean value of 241°C), with salinities of 2.4–9.9 wt% NaCl equivalent (mean value of 6.5 wt% NaCl equivalent) and 3.7–11.7 wt% NaCl equivalent (mean value of 7.7 wt% NaCl equivalent), respectively. No suitable mineral, such as quartz or calcite, was found for fluid inclusion study from late mineralization stage. In contrast, only aqueous inclusions were found from post‐ore barren veins, which yielded lower homogenization temperatures ranging from 168–241°C (mean value of 195°C) and similar salinities (2.6–12.6 wt% NaCl equivalent with averaged value of 7.2 wt% NaCl equivalent). The different homogenization temperatures and similar salinities of C‐type and W‐type from each mineralization stage indicate that fluid immiscibility and boiling occurred. The Baolun gold deposit was precipitated from a CO2‐bearing mesothermal fluid, and formed at a syn‐collision environment following the closure of the Paleo‐Tethys.  相似文献   

5.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

6.
Gold deposits in the Taihang Mountains, northern China, mainly consist of quartz sulfide veins in granitoid plutons. This paper describes the geological setting of the gold deposits, and presents the results of microthermometric, Fourier transform infrared spectra, and stable isotope analyses of ore—forming fluids for the purpose of examining the characteristics of these fluids. The ore—forming fluid was of high temperature (up to 380°C) and high salinity (33–41 wt% NaCl equiv.), represented by type I inclusions (with daughter minerals). This fluid evolved to low salinity at low temperatures recorded in type II (liquid-rich) and III inclusions (vapor—rich). Primary type II inclusions coexist with type III inclusions in quartz. Type III inclusions have almost the same homogenization temperatures as type II inclusions. This probably reflects boiling. The secondary fluid inclusions homogenized at lower temperatures, and have lower salinities than primary inclusions. Based on microthermometric data, we propose that the high—temperature fluid that separated from residual magma corresponded to the ore—forming fluid represented by type I inclusions. This fluid mixed with meteoric water in the upper part of the granitic pluton and was diluted. The diluted fluid boiled, probably due to abrupt pressure decrease, and formed liquid—rich type II inclusions and vapor—rich type III inclusions. The deposition of sulfide minerals and gold probably occurred during boiling.  相似文献   

7.
The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt. Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite. There are three distinguishable types of fluid inclusions: crystal-rich, CO2–NaCl–H2O, and NaCl–H2O. At more than 500°C and 350~480 MPa, crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage, characterized by a dense hydrous alkali borosilicate fluid with a carbonate component. Between 412°C and 278°C, CO2–NaCl–H2Ofluid inclusions developed in spodumene (I) and quartz (II) with a low salinity (3.3–11.9 wt%NaCl equivalent) and a high volatile content, which represent the boundary between the transition stage and the hydrothermal stage. The subsequentNaCl–H2Ofluid inclusions from the hydrothermal stage, between 189°C and 302°C, have a low salinity (1.1–13.9 wt%NaCl equivalent). The various types of fluid inclusions reveal the P–T conditions of pegmatite formation, which marks the transition process from magmatic to hydrothermal. The ore-forming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit. The ore-forming fluid provided not only materials for crystallization of rare metal minerals, such as spodumene and beryl, but also the ideal conditions forthe growth of ore minerals. Therefore, this area has favorable conditions for lithium enrichment and excellent prospecting potential.  相似文献   

8.
Abstract, Results of a study of fluid inclusions in anhydrite from drill hole Y-6 in the Chicxulub crater, of northwestern Yucatan, Mexico, are reported in this work. The Chicxulub crater was formed at the Cretaceous-Tertiary boundary by a meteorite impact. The resulting ejection breccias are composed mostly of hydrothermally altered crystalline basement material. The mineral assemblage pyroxene + anhydrite + quartz is associated with the hydrothermal alteration. The analyzed fluid inclusions in the anhydrite show highly heterogeneous phase assemblages within the same crystal plane. Fluid inclusion types include liquid plus vapor inclusions (L+V), vapor-rich inclusions (V), and inclusions containing daughter crystals (L+V+S). The eutectic temperatures indicate a brine composition dominated by CaCl2-NaCl. Both the salinity and the homogenization temperatures show a wide range (from 3.6 to 23 wt% NaCl equivalent for the L+V inclusions, and 36 to 42 wt% NaCl equivalent for the L+V+S inclusions). The homogenization temperatures range from 100° to 500°C. These data represent cooling and boiling trends. We assume that the impact breccias were ejected at high temperature in an aqueous environment (above 500°C). This caused boiling of sea water and precipitation of anhydrite with its inclusions.  相似文献   

9.
The Kendekeke polymetallic deposit, located in the middle part of the magmatic arc belt of Qimantag on the southwestern margin of the Qaidam Basin, is a polygenetic compound deposit in the Qimantag metallogenic belt of Qinghai Province. Multi-periodic ore-forming processes occurred in this deposit, including early-stage iron mineralization and lead-zinc-gold-polymetallic mineralization which was controlled by later hydrothermal process. The characteristics of the ore-forming fluids and mineralization were discussed by using the fluid inclusion petrography, Laser Raman Spectrum and micro-thermometry methods. Three stages, namely, S1-stage(copper-iron-sulfide stage), S2-stage(lead-zinc-sulfide stage) and C-stage(carbonate stage) were included in the hydrothermal process as indicated by the results of this study. The fluid inclusions are in three types: aqueous inclusion(type I), CO2-aqueous inclusion(type II) and pure CO2 inclusion(type III). Type I inclusions were observed in the S1-stage, having homogenization temperature at 240–320oC, and salinities ranging from 19.8% to 25.0%(wt % NaCl equiv.). All three types of inclusions, existing as immiscible inclusion assemblages, were presented in the S2-stage, with the lowest homogenization temperature ranging from 175 oC to 295oC, which represents the metallogenic temperature of the S2-stage. The salinities of these inclusions are in the range of 1.5% to 16%. The fluid inclusions in the C-stage belong to types I, II and III, having homogenization temperatures at 120–210oC, and salinities ranging from 0.9% to 14.5%. These observations indicate that the ore-forming fluids evolved from high-temperature to lowtemperature, from high-salinity to low-salinity, from homogenization to immiscible separation. Results of Laser Raman Spectroscopy show that high density of CO2 and CH4 were found as gas compositions in the inclusions. CO2, worked as the pH buffer of ore-forming fluids, together with reduction of organic gases(i.e. CH4, etc), affected the transport and sediment of the minerals. The fluid system alternated between open and close systems, namely, between lithostatic pressure and hydrostatic pressure systems. The calculated metallogenic pressures are in the range of 30 to 87 Mpa corresponding to 3 km mineralization depth. Under the influence of tectonic movements, immiscible separation occurred in the original ore-forming fluids, which were derived from the previous highsalinity, high-temperature magmatic fluids. The separation of CO2 changed the physicochemical properties and composition of the original fluids, and then diluted by mixing with extraneous fluids such as meteoric water and groundwater, and metallogenic materials in the fluids such as lead, zinc and gold were precipitated.  相似文献   

10.
The Piaotang deposit is one of the largest vein-type W-polymetallic deposits in southern Jiangxi Province, South China. The coexistence of wolframite and cassiterite is an important feature of the deposit. Based on detailed petrographic observations, microthermometry of fluid inclusions in wolframite, cassiterite and intergrown quartz was undertaken. The inclusions in wolframite were observed by infrared microscope, while those in cassiterite and quartz were observed in visible light. The fluid inclusions in wolframite can be divided into two types: aqueous inclusions with a large vapor-phase proportion and aqueous inclusions with a small vapor-phase ratio. The homogenization temperature (Th) of inclusions in wolframite with large vapor-phase ratios ranged from 280°C to 390°C, with salinity ranging from 3.1 to 7.2 wt% NaCl eq. In contrast, the Th values of inclusions with small vapor-phase ratios ranged from 216°C to 264°C, with salinity values ranging from 3.5 to 9.3 wt% NaCl eq. Th values of primary inclusions in cassiterite ranged from 316°C to 380°C, with salinity ranging from 5.4 to 9.3 wt% NaCl eq. Th values for primary fluid inclusions in quartz ranged from 162°C to 309°C, with salinity values ranging from 1.2 to 6.7 wt% NaCl eq. The results show that the formation conditions of wolframite, cassiterite and intergrown quartz are not uniform. The evolutionary processes of fluids related to these three kinds of minerals are also significantly different. Intergrown quartz cannot provide the depositional conditions of wolframite and cassiterite. The fluids related to tungsten mineralization for the NaCl-H2O system had a medium-to-high temperature and low salinity, while the fluids related to tin mineralization for the NaCl-H2O system had a high temperature and medium-to-low salinity. The results of this study suggest that fluid cooling is the main mechanism for the precipitation of tungsten and tin.  相似文献   

11.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

12.
The Sar-Cheshmeh porphyry Cu–Mo deposit is located in Southwestern Iran (∼65 km southwest of Kerman City) and is associated with a composite Miocene stock, ranging in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies demonstrate that the emplacement of the Sar-Cheshmeh stock took place in several pulses, each with associated hydrothermal activity. Molybdenum was concentrated at a very early stage in the evolution of the hydrothermal system and copper was concentrated later. Four main vein Groups have been identified: (I) quartz+molybdenite+anhydrite±K-feldspar with minor pyrite, chalcopyrite and bornite; (II) quartz+chalcopyrite+pyrite±molybdenite±calcite; (III) quartz+pyrite+calcite±chalcopyrite±anhydrite (gypsum)±molybdenite; (IV) quartz±calcite±gypsum±pyrite±dolomite. Early hydrothermal alteration produced a potassic assemblage (orthoclase-biotite) in the central part of the stock, propylitic alteration occurred in the peripheral parts of the stock, contemporaneously with potassic alteration, and phyllic alteration occurred later, overprinting earlier alteration. The early hydrothermal fluids are represented by high temperature (350–520 °C), high salinity (up to 61 wt% NaCl equivalent) liquid-rich fluid inclusions, and high temperature (340–570 °C), low-salinity, vapor-rich inclusions. These fluids are interpreted to represent an orthomagmatic fluid, which cooled episodically; the brines are interpreted to have caused potassic alteration and deposition of Group I and II quartz veins containing molybdenite and chalcopyrite. Propylitic alteration is attributed to a liquid-rich, lower temperature (220–310 °C), Ca-rich, evolved meteoric fluid. Influx of meteoric water into the central part of the system and mixing with magmatic fluid produced albitization at depth and shallow phyllic alteration. This influx also caused the dissolution of early-formed copper sulphides and the remobilization of Cu into the sericitic zone, the main zone of the copper deposition in Sar-Cheshmeh, where it was redeposited in response to a decrease in temperature.  相似文献   

13.
The Bismark deposit (8.5 Mt at 8% Zn, 0.5% Pb, 0.2% Cu, and 50 g/t Ag) located in northern Mexico is an example of a stock-contact skarn end member of a continuum of deposit types collectively called high-temperature, carbonate-replacement deposits. The deposit is hosted by massive sulfide within altered limestone adjacent to the Bismark quartz monzonite stock (~42 Ma) and the Bismark fault. Alteration concurrently developed in both the intrusion and limestone. The former contains early potassic alteration comprising K-feldspar and biotite, which was overprinted by kaolinite-rich veins and alteration and later quartz, sericite, and pyrite with minor sphalerite and chalcopyrite. Prograde exoskarn alteration in the limestone consists of green andradite and diopside, and transitional skarn comprising red-brown andradite, green hedenbergite and minor vesuvinite, calcite, fluorite, and quartz. The main ore stage post-dates calc-silicate minerals and comprises sphalerite and galena with gangue pyrite, pyrrhotite, calcite, fluorite, and quartz. The entire hydrothermal system developed synchronously with faulting. Fluid inclusion studies reveal several distinct temporal, compositional, and thermal populations in pre-, syn- and post-ore quartz, fluorite, and calcite. The earliest primary fluid inclusions are coexisting vapor-rich (type 2A) and halite-bearing (type 3A; type 3B contain sylvite) brine inclusions (32 to >60 total wt% salts) that occur in pre-ore fluorite. Trapping temperatures are estimated to have been in excess of 400 °C under lithostatic pressures of ~450 bar (~1.5 km depth). Primary fluid inclusions trapped in syn-ore quartz display critical to near critical behavior (type 1C), have moderate salinity (8.4 to 10.9 wt% NaCl equiv.) and homogenization temperatures (Th) ranging from 351 to 438 °C. Liquid-rich type 1A and 1B (calcite-bearing) inclusions occur as primary to secondary inclusions predominantly in fluorite and show a range in Th (104–336 °C) and salinity (2.7–11.8 wt% NaCl equiv.), which at the higher Th and salinity ranges overlap with type 1C inclusions. Oxygen isotope analysis was carried out on garnet, quartz, and calcite (plus carbon isotopes) in pre-, syn-, post-ore, and peripheral veins. Pre-ore skarn related garnets have a δ18Omineral range between 3.9 and 8.4‰. Quartz from the main ore stage range between 13.6 and 16.0‰. Calcite from the main ore stage has δ13C values of –2.9 to –5.1‰ and δ18O values of 12.3 to 14.1‰, which are clearly distinct from post-ore veins and peripheral prospects that have much higher δ18O (16.6–27.3‰) and δ13C (1.3–3.1‰) values. Despite the numerous fluid inclusion types, only two fluid sources can be inferred, namely a magmatic fluid and an external fluid that equilibrated with limestone. Furthermore, isotopic data does not indicate any significant mixing between the two fluids, although fluid inclusion data may be interpreted otherwise. Thus, the various fluid types were likely to have formed from varying pressure–temperature conditions through faulting during exsolution of magmatic fluids. Late-stage hydrothermal fluid activity was dominated by the non-magmatic fluids and was post-ore.  相似文献   

14.
The Haobugao deposit, located in the southern segment of the Great Xing'an Range, is a famous skarn‐related Pb‐Zn‐(Cu)‐(Fe) deposit in northern China. The results of our fluid inclusion research indicate that garnets of the early stage (I skarn stage) contain three types of fluid inclusions (consistent with the Mesozoic granites): vapor‐rich inclusions (type LV, with VH2O/(VH2O + LH2O) < 50 vol %, and the majority are 5–25 vol %), liquid‐rich two‐phase aqueous inclusions (type VL, with VH2O/(VH2O + LH2O) > 50 vol %, the majority are 60–80 vol %), and halite‐bearing multiphase inclusions (type SL). These different types of fluid inclusions are totally homogenized at similar temperatures (around 320–420°C), indicating that the ore‐forming fluids of the early mineralization stage may belong to a boiling fluid system. The hydrothermal fluids of the middle mineralization stage (II, magnetite‐quartz) are characterized by liquid‐rich two‐phase aqueous inclusions (type VL, homogenization temperatures of 309–439°C and salinities of 9.5–14.9 wt % NaCl eqv.) that coexist with vapor‐rich inclusions (type LV, homogenization temperatures of 284–365°C and salinities of 5.2–10.4 wt % NaCl eqv.). Minerals of the late mineralization stage (III sulfide‐quartz stage and IV sulfide‐calcite stage) only contain liquid‐rich aqueous inclusions (type VL). These inclusions are totally homogenized at temperatures of 145–240°C, and the calculated salinities range from 2.0 to 12.6 wt % NaCl eqv. Therefore, the ore‐forming fluids of the late stage are NaCl‐H2O‐type hydrothermal solutions of low to medium temperature and low salinity. The δD values and calculated δ18OSMOW values of ore‐forming fluids of the deposit are in the range of ?4.8 to 2.65‰ and ?127.3‰ to ?144.1‰, respectively, indicating that ore‐forming fluids of the Haobugao deposit originated from the mixing of magmatic fluid and meteoric water. The S‐Pb isotopic compositions of sulfides indicate that the ore‐forming materials are mainly derived from underlying magma. Zircon grains from the mineralization‐related granite in the mining area yield a weighted 206Pb/238U mean age of 144.8 ±0.8 Ma, which is consistent with a molybdenite Re‐Os model age (140.3 ±3.4 Ma). Therefore, the Haobugao deposit formed in the Early Cretaceous, and it is the product of a magmatic hydrothermal system.  相似文献   

15.
The Kizilcaören fluorite–barite–Rare Earth Element (REE) deposit occurs as epithermal veins and breccia fillings in altered Triassic metasandstones and Oligocene–Miocene pyroclastics adjacent to alkaline porphyritic trachyte and phonolite. This deposit is the only commercial source of REE and thorium in Turkey. Most of the fluorite–barite–REE mineralisation at Kizilcaören has been formed by hydrothermal solutions, which are thought to be genetically associated with alkaline volcanism. The occurrence of the ore minerals in vuggy cavities and veins of massive and vuggy silica indicate that the ore stage postdates hydrothermal alteration. The deposit contains evidence of at least three periods of hypogene mineralisation separated by two periods of faulting. The mineral assemblage includes fluorite, barite, quartz, calcite, bastnäsite, phlogopite, pyrolusite and hematite as well as minor amounts of plagioclase feldspar, pyrite, psilomelane, braunite, monazite, fluocerite, brockite, goethite, and rutile. Fluid inclusion microthermometry indicates that the barite formed from low salinity (0.4–9.2 equiv. wt% NaCl) fluids at low temperatures, between 105 and 230 °C, but fluorite formed from slightly higher salinity (<12.4 equiv. wt% NaCl) fluids at low and moderate temperatures, between 135–354 °C. The depositional temperature of bastnäsite is between 143–286 °C. The local coexistence of liquid- and vapour-rich inclusions suggests boiling conditions. Many relatively low-salinity (<10.0 equiv. wt% NaCl), low and moderate temperature (200–300 °C) inclusions might be the result of episodic mixing of deep-saline brines with low-salinity meteoric fluids. The narrow range of δ34S (pyrite and barite) values (2.89–6.92‰ CDT)suggests that the sulphur source of the hydrothermal fluids are the same and compatible with a volcanogenic sulphate field derived from a magmatic sulphur source.  相似文献   

16.
The Daraloo field is located in the southeast of Iran (Kerman province). It is associated with Oligomiocene diorite/granodiorite to quartz monzonite stocks. Copper mineralization is basically relevant to potassic and phyllic alteration zones. Petrographic and geologic studies imply that mineralization is restricted to two major parts locating in the center and east of district. The larger central mineralization has a northwest–southeast trend perpendicular to the smaller one. Hydrothermal ore fluid formation occurred in relatively deep levels thereafter faulting and fracturing provided appropriate conduits to ascend fluids through shallower depths. Early hydrothermal alteration produced a confined potassic assemblage in the central and eastern parts of the stock. Two main fluid inclusion groups in relationship with alteration ore fluids have been identified. They are liquid-rich inclusions containing solid phases, with high temperatures (257°C to 554°C) and high salinities (31 to 67 wt.% NaCl equiv.), and vapor-rich inclusions with high temperatures and low salinities without any solid phases. These magmatic source fluids are responsible for boiling and also potassic and phyllic alteration zone. They also resulted in the formation of quartz groups I and II veins and chalcopyrite deposition. Propylitic alteration is attributed to a Ca-rich meteoric fluid. Inclusions originated from this fluid are liquid-rich having low temperatures (161°C to 269°C) and low salinities (1 to 13 wt.% NaCl). Mixing descending meteoric water with magmatic fluids reduces considerably the salinity of magmatic fluid. Mixing is also the impetus of leaching copper from potassic to the phyllic zone. It is possible to conclude that all these procedures are controlled by the main faults of district having NW–SE trend. Two fundamental events affecting the mineralization are cooling ore-bearing fluids and magnetite (±pyrite) emplacement. The latter one is formed in potassic and phyllic alteration zone in which copper-bearing fluids have interaction with magnetite minerals and so chalcopyrite minerals have been formed nearby magnetites. Temperature and pressure of hydrothermal fluid differentiation could be applied as a predictive tool to discriminate between barren and productive copper porphyry deposits. A simple comparison of temperature and pressure variations between Daraloo deposit and other copper porphyry deposits located in the same belt of Iran (Sahand-Bazman belt) illuminates that Daraloo system has high range of pressure implying deeper exsolution of hydrothermal fluid. On the other hand, economic mineralization has direct relationship with temperature range of orthomagmatic fluids so that if a deposit has a wide range of high temperature fluids, it could be inferred as a barren deposit. In conclusion, it could be inferred that Daraloo district can be categorized as a sub-economic porphyry deposit. On the other hand, restricted formation of chalcopyrite and the other copper-bearing minerals besides large amounts of magnetite and pyrite can approve obviously the low grade of mineralization in Daraloo district.  相似文献   

17.
The pressure, temperature and composition of ore fluids that resulted in gold deposition in the Archean, greenstone-hosted Hutti deposit have been studied using fluid inclusions and the compositions of arsenopyrite and chlorite. Five types of fluids have been identified in fluid inclusions in quartz veins associated with mineralization. They are (1) monophase CO 2-rich fluid; (2) low-salinity (0 to 14 wt% NaCl equivalent) and high-salinity (16 to 23 wt% NaCl equiv.) aqueous fluids; (3) high-salinity (28 to 40 wt% NaCl equiv.), polyphase aqueous fluids; (4) CO 2–H 2O–NaCl fluids of low salinity (0–8 wt% NaCl equiv.); and (5) a few carbonic inclusions with halite±nahcolite. The diversity of entrapped fluid composition is explained in terms of changes in fluid pressure and temperature which affect a more or less uniform supply of primary low-salinity CO 2–H 2O–NaCl fluid to the shear zone. Geothermobarometric studies indicate that during mineralization temperature ranged between 360 and 240 °C, and fluid pressure between 3,600 and 1,600 bar. The data are interpreted in terms of the cyclic fault-valve mechanism for active shear zones. Deposition of gold and sulfides has been studied on the basis of constraints from the composition of wall-rock chlorite, ore-mineral assemblages, and textural features. Tubular channels, 20 to 100 µm wide and up to 500 µm long that arise from fractures and C-planes in sheared quartz veins are reported for the first time. The channels have pyrrhotite, arsenopyrite, pyrite and gold at their distal ends, with calcite filling up the remaining part. These channels form in response to increases in T and P, by dissolution of quartz grains, guided by dislocations in them. At the PT conditions of interest, gold and sulfide deposition takes place in the shears and fractures of quartz veins from CO 2–H 2O–NaCl ore fluid of low salinity and pH due to changes in phase compositions that occur during the process of shear failure of the enclosing rocks. In the wall rock where pH is buffered, gold deposition takes place from the predominant Au(HS) 2 - species with progressive sulfide deposition and decrease in SS, from 0.01 to 0.001 mol/kg as T falls from 360 to 240 °C.  相似文献   

18.
The Sibutad gold deposit has gold associated in quartz veins. The most important of these is the Lalab orebody, which contains ore‐grade gold, predominantly, in milky quartz veins and veinlets. Here, alteration quartz and fine‐grained crystalline clear and milky quartz were formed from hydrothermal fluids in three stages, namely stages I, II and III. Fluid inclusion microthermometry was carried out on stage I milky quartz, stage II fine‐grained alteration quartz and stage III milky quartz ± barite veins and veinlets. Homogenization temperatures (TH) are >248°C in stage I, 214–232°C in stage II and 186–239°C in stage III. These fluid inclusions have salinity between 1 and 2 wt% NaCl equivalent. In terms of gold assay, stage I drill‐core samples have gold grades 0.53–0.76 g/ton Au, stage II samples have 1.12–3.70 g/ton Au and stage III samples have 9.06–23.88 g/ton Au. This correlation suggests that gold was precipitated from the stage II and III fluids.  相似文献   

19.
The Horní Slavkov–Krásno Sn–W ore district is hosted by strongly altered Variscan topaz–albite granite (Krudum granite body) on the northwestern margin of the Bohemian Massif. We studied the fluid inclusions on greisens, ore pockets, and ore veins from the Hub Stock, an apical expression of the Krudum granite. Fluid inclusions record almost continuously the post-magmatic cooling history of the granite body from ~500 to <50°C. Rarely observed highest-temperature (~500°C) highest-salinity (~30?wt.% NaCl eq.) fluid inclusions are probably the result of secondary boiling of fluids exsolved from the crystallizing magma during pressure release which followed hydraulic brecciation of the gneissic mantle above the granite cupola. The greisenization was related to near-critical low-salinity (0–7?wt.% NaCl eq.) aqueous fluids with low amount of CO2, CH4, and N2 (≤10?mol% in total) at temperatures of ~350–400°C and pressures of 300–530 bar. Crush-leach data display highly variable and negatively correlated I/Cl and Br/Cl values which are incompatible with both orthomagmatic and/or metamorphic origin of the fluid phase, but can be explained by infiltration of surficial and/or sedimentary fluids. Low fluid salinity indicates a substantial portion of meteoric waters in the fluid mixture that is in accordance with previous stable isotope data. The post-greisenization fluid activity associated with vein formation and argillitization is characterized by decreasing temperature (<350 to <50°C), decreasing pressure (down to ~50–100 bar), and mostly also decreasing salinity.  相似文献   

20.
Abstract: The Daejang mine is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into four stages (stages I, II, III and IV) by major tectonic fracturing. Stages I, III and IV are economically barren. Stage II, at which the precipitation of major ore minerals occurred, is further divided into three substages with paragenetic time based on minor fractures and discernible mineral assemblages: substage IIa, marked by deposition of quartz and Fe–sulfides; substage IIb, by introduction of base-metal sulfides within carbonates and some quartz; substage IIc, by quartz and carbonates with various sulfosalts. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. Both CO2–rich and H2O–rich fluids were trapped in fluid inclusions at stage I and substage IIa. It is suggested that a compositionally heterogeneous fluid was formed by fluid boiling and CO2 immiscibility at temperatures of about 400° to 300°C. Composite lodes of base-metal sul–fides, carbonates and quartz at substage IIb were deposited in open spaces created by fracturing. The fracturing event prompted rapid decreases in pressure and temperature of residual fluids and resulted in retrograde fluid boiling at about 200 bars and 300°–250°C during substage IIb. The progressive loss of CO2 by CO2 effervescence and retrograde boiling from substage IIa and IIb fluids resulted in pH increase and related increase in carbonate activity, causing deposition of abundant carbonates. The change in pH also caused the decrease of stability of hydrogen sulfide with Cu, Zn and Pb chloride complexes (as main transporting agents at Daejang) and resulted in the pricipitation of base-metal minerals. Deposition of Ag– and Sb-bearing sul–fides and sulfosalts of substage IIc occurred at temperatures of about 250° to 150°C from a dominantly aqueous fluid with low salinity (down to 3. 0 equiv. wt % NaCl). At this substage, aqueous fluid formed by mixing with cooler and less saline meteoric groundwater. There is a systematic decrease in caculated δ18Owater values with the mineralization stage (and decreasing temperature) in the Daejang hydrothermal system, from values of about 11% for stage I, through about 4% for stages II and III, to about –3 per mil for stage IV. The result of stable isotope and fluid inclusion studies are interpreted to indicate progressive less evolved and/or unexchanged meteoric water influx of an early hydrothermal system formed by highly evolved meteoric waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号