首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MHD in protostellar discs is modified by the Hall current when the ambipolar diffusion approximation breaks down. Here I examine the Balbus–Hawley (magnetorotational) instability of a weak, vertical magnetic field within a weakly ionized disc. Vertical stratification is neglected, and a linear analysis is undertaken for the case in which the wavevector of the perturbation is parallel to the magnetic field.
The growth rate depends on whether the initial magnetic field is parallel or antiparallel to the angular momentum of the disc. The parallel case is less (more) unstable than the antiparallel case if the Hall current is dominated by negative (positive) species. The less-unstable orientation is stable for χ ≲0.5, where χ is the ratio of a generalized neutral–ion collision frequency to the Keplerian frequency. The other orientation has a formal growth rate of the order of the Keplerian angular frequency even in the limit χ →0! In this limit the wavelength of the fastest-growing mode tends to infinity, so the minimum level of ionization for instability is determined by the requirement that a wavelength fit within a disc scaleheight. In the ambipolar diffusion case, this requires χ > v A c s; in the Hall case this imposes a potentially much weaker limit,      相似文献   

2.
Heat transfer through weakly magnetized diffuse astrophysical plasmas excites whistlers. This leads to electron whistler resonant scattering, a reduction of the electron mean free path, and heat flux inhibition. However, only whistlers propagating at a finite angle to the magnetic field (off-axis) can scatter the heat flux carrying electrons. Thus the level of heat flux inhibition along the magnetic field lines depends on the presence of off-axis whistlers.   We obtain a solution of the Boltzmann equation with the whistler wave equation and show that if εthβe ≫ 10−4, where εth is the thermal collisional Knudsen number and βe is the ratio of the electron pressure to the magnetic energy density, then scattering of heat flux carrying electrons by off-axis whistlers, which are shown to propagate at about 65δ, is efficient enough to lead to heat flux inhibition along field lines. The inhibition so obtained is proportional to (εthβe)−1.  相似文献   

3.
We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simulation including the vertically integrated magnetic forces. The three-dimensional magnetic field outside the disc is calculated in a potential field approximation from the magnetic flux density distribution in the disc. For uniformly rotating discs we confirm numerically the existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou . In agreement with predictions from the shearing sheet model, discs with Keplerian rotation are found to be stabilized by the shear, as long as the contribution of magnetic forces to support against gravity is small. When this support becomes significant, we find a global instability which transports angular momentum outwardly and allows mass to accrete inwardly. The instability takes the form of a m =1 rotating 'crescent', reminiscent of the purely hydrodynamic non-linear instability previously found in pressure-supported discs. A model where the initial surface mass density Σ( r ) and B z ( r ) decrease with radius as power laws shows transient mass accretion during about six orbital periods, and settles into a state with surface density and field strength decreasing approximately exponentially with radius. We argue that this instability is likely to be the main angular momentum transport mechanism in discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It may be especially relevant in jet-producing discs.  相似文献   

4.
We consider warped equilibrium configurations for stellar and gaseous discs in the Keplerian force field of a supermassive black hole, assuming that the self-gravity of the disc provides the only acting torques. Modelling the disc as a collection of concentric circular rings and computing the torques in the non-linear regime, we show that stable, strongly warped precessing equilibria are possible. These solutions exist for a wide range of disc-to-black-hole mass ratios   M d/ M bh  , can span large warp angles of up to  ±∼120°  , have inner and outer boundaries, and extend over a radial range of a factor of typically two to four. These equilibrium configurations obey a scaling relation such that in good approximation     where     is the (retrograde) precession frequency and Ω is a characteristic orbital frequency in the disc. Stability was determined using linear perturbation theory and, in a few cases, confirmed by numerical integration of the equations of motion. Most of the precessing equilibria are found to be stable, but some are unstable. The main result of this study is that highly warped discs near black holes can persist for long times without any persistent forcing other than by their self-gravity. The possible relevance of this to galactic nuclei is briefly discussed.  相似文献   

5.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

6.
We construct analytically stationary global configurations for both aligned and logarithmic spiral coplanar magnetohydrodynamics (MHD) perturbations in an axisymmetric background MHD disc with a power-law surface mass density  Σ0∝ r −α  , a coplanar azimuthal magnetic field   B 0∝ r −γ  , a consistent self-gravity and a power-law rotation curve   v 0∝ r −β  , where v 0 is the linear azimuthal gas rotation speed. The barotropic equation of state  Π∝Σ n   is adopted for both MHD background equilibrium and coplanar MHD perturbations where Π is the vertically integrated pressure and n is the barotropic index. For a scale-free background MHD equilibrium, a relation exists among  α, β, γ  and n such that only one parameter (e.g. β) is independent. For a linear axisymmetric stability analysis, we provide global criteria in various parameter regimes. For non-axisymmetric aligned and logarithmic spiral cases, two branches of perturbation modes (i.e. fast and slow MHD density waves) can be derived once β is specified. To complement the magnetized singular isothermal disc analysis of Lou, we extend the analysis to a wider range of  −1/4 < β < 1/2  . As an illustrative example, we discuss specifically the  β= 1/4  case when the background magnetic field is force-free. Angular momentum conservation for coplanar MHD perturbations and other relevant aspects of our approach are discussed.  相似文献   

7.
A model is presented for an accretion disc in which the inflow is driven purely by the angular momentum removed in a centrifugally accelerated magnetic wind. Turbulent discs around compact stars are considered, with the required magnetic field being generated in the disc by a simple dynamo. The turbulent magnetic Prandtl number, N p, measures the ratio of turbulent viscosity to turbulent magnetic diffusivity. Formally, the hypothetical limit   N p→ 0  corresponds to the magnetic wind torque dominating the viscous torque, but in practice the inflow is magnetically controlled for   N p≲ 0.1  .
The suggestion by previous authors that purely magnetic wind-driven discs may be unstable is investigated. A detailed steady solution is found which allows perturbations to the thermal balance and vertical equilibrium to be calculated, and hence the effect of perturbations to the magnetic diffusivity, η, to be assessed. For a standard parametrized form of η, the wind-driven angular momentum balance is found to be linearly unstable. An increase in the inflow rate leads to increased bending of the poloidal magnetic field and an enhanced wind mass loss rate. This increases the angular momentum loss rate which drives further inflow. There is a resultant increase in η, due to the temperature perturbation, but this does not relieve field bending sufficiently to prevent the instability.  相似文献   

8.
The problem of the efficiency of particle acceleration for a paraboloidal poloidal magnetic field is considered within the approach of steady axisymmetric magnetohydrodynamic (MHD) flow. For the large Michel magnetization parameter σ it is possible to linearize the stream equation near the force-free solution and to solve the problem self-consistently as was done by Beskin, Kuznetsova & Rafikov for a monopole magnetic field. It is shown that, on the fast magnetosonic surface (FMS), the particle Lorentz factor γ does not exceed the standard value  σ1/3  . On the other hand, in the supersonic region, the Lorentz factor grows with the distance z from the equatorial plane as  γ≈ ( z / R L)1/2  up to the distance   z ≈σ2 R L  , where   R L= c /ΩF  is the radius of the light cylinder. Thus, the maximal Lorentz factor is  γmax≈σ  , which corresponds to almost the full conversion of the Poynting energy flux into the particle kinetic one.  相似文献   

9.
We use recent observations of high-redshift galaxies to study the evolution of galactic discs over the redshift range 0 <  z ≲1. The data are inconsistent with models in which discs were already assembled at z  = 1 and have evolved only in luminosity since that time. Assuming that disc properties change with redshift as powers of 1 +   z and analysing the observations assuming an Einstein–de Sitter universe, we find that for given rotation speed, disc scalelength decreases with z as ∼ (1 +  z )−1, total B -band mass-to-light ratio decreases with z as ∼ (1 +  z )−1, and disc luminosity (again in B ) depends only weakly on z . These scalings are consistent with current data on the evolution of disc galaxy abundance as a function of size and luminosity. Both the scalings and the abundance evolution are close to the predictions of hierarchical models for galaxy formation. If different cosmogonies are compared, the observed evolution in disc size and disc abundance favours a flat low-Ω0 universe over an Einstein–de Sitter universe.  相似文献   

10.
I solve analytically the viscous evolution of an irradiated accretion disc, as seen during outbursts of soft X-ray transients. The solutions predict steep power-law X-ray decays L X ∼ (1 + t/tvisc)−4, changing to L X ∼ (1 − t/t'visc)4 at late times, where t visc, t 'visc are viscous time-scales. These forms closely resemble the approximate exponential and linear decays inferred by King and Ritter in these two regimes. The decays are much steeper than for unirradiated discs because the viscosity is a function of the central accretion rate rather than of local conditions in the disc.  相似文献   

11.
We have performed N -body numerical simulations of the exchange of angular momentum between a massive planet and a 3D Keplerian disc of planetesimals. Our interest is directed at the study of the classical analytical expressions of the lineal theory of density waves, as representative of the dynamical friction in discs 'dominated by the planet' and the orbital migration of the planets with regard to this effect. By means of a numerical integration of the equations of motion, we have carried out a set of numerical experiments with a large number of particles  ( N ≥10 000)  , and planets with the mass of Jupiter, Saturn and one core mass of the giant planets in the Solar system  ( M c=10 M)  . The torque, measured in a phase in which a 'steady forcing' is clearly measurable, yields inward migration in a minimum-mass solar disc  (Σ∼10 g cm-2  ), with a characteristic drift time of ∼ a few 106 yr. The planets predate the disc, but the orbital decay rate is not sufficient to allow accretion in a time-scale relevant to the formation of giant planets. We found reductions of the measured torque on the planet, with respect to the linear theory, by a factor of 0.38 for M c, 0.04 for Saturn and 0.01 for Jupiter, due to the increase in the perturbation on the disc. The behaviour of planets whose mass is larger than M c is similar to the one of type II migrators in gaseous discs. Our results suggest that, in a minimum mass, solar planetesimals disc, type I migrations occur for masses smaller than M c, whereas for this mass value it could be a transition zone between the two types of migration.  相似文献   

12.
The effects of gravitational softening on the global structure of self-gravitating discs in centrifugal equilibrium are examined in relation to hydrodynamical/gravitational simulations. The one-parameter spline softening proposed by Hernquist & Katz is used.
It is found that if the characteristic size of a disc, r , is comparable to or less than the gravitational softening length, ε, then the cross-section of the simulated disc is significantly larger than that of a no-softening (Newtonian) disc with the same mass and angular momentum.
We demonstrate, furthermore, that if r ≲ε/2 then the scaling relation r ∝ε3/4 holds for a given mass and specific angular momentum distribution with mass. Finally, we compare some of the theoretical results obtained in this paper and a previous one with the results of numerical Tree-SPH simulations and find qualitative agreement.  相似文献   

13.
We derive the asymptotic mass profile near the collapse centre of an initial spherical density perturbation, δ ∝ M − ε , of collisionless particles with non-radial motions. We show that angular momenta introduced at the initial time do not affect the mass profile. Alternatively, we consider a scheme in which a particle moves on a radial orbit until it reaches its turnaround radius, r ∗. At turnaround the particle acquires an angular momentum L =ℒ√ GM * r * per unit mass, where M ∗ is the mass interior to r ∗. In this scheme, the mass profile is M ∝ r 3/(1+3 ε ) for all ε >0 , in the region r / r t ≪ℒ , where r t is the current turnaround radius. If ℒ≪1 then the profile in the region ℒ≪ r / r t ≪1 is M ∝ r for ε <2/3 , and remains M ∝ r 3/(1+3 ε ) for ε ≥2/3 . The derivation relies on a general property of non-radial orbits which is that the ratio of the pericentre to apocentre is constant in a force field k ( t ) r n with k ( t ) varying adiabatically.  相似文献   

14.
We examine the physical processes of radiatively driven mass accretion on to galactic nuclei, owing to intensive radiation from circumnuclear starbursts. The radiation from a starburst not only causes the inner gas disc to contract via radition flux force, but also extracts angular momentum owing to relativistic radiation drag, thereby inducing an avalanche of the surface layer of the disc. To analyse such a mechanism, the radiation–hydrodynamical equations are solved, including the effects of the radiation drag force as well as the radiation flux force. As a result, it is found that the mass accretion rate owing to the radiative avalanche is given by M ˙ ( r )= η ( L */ c 2)( r / R )2 (Δ R / R )(1 −  e −τ) at radius r , where the efficiency η ranges from 0.2 up to 1, L * and R are respectively the bolometric luminosity and the radius of the starburst ring, Δ R is the extent of the emission regions, and τ is the face-on optical depth of the disc. In an optically thick regime, the rate depends upon neither the optical depth nor the surface mass density distribution of the disc. The present radiatively driven mass accretion may provide a physical mechanism which enables mass accretion from 100-pc scales down to ∼ parsec scales, and it may eventually be linked to advection-dominated viscous accretion on to a massive black hole. The radiation–hydrodynamical and self-gravitational instabilities of the disc are briefly discussed. In particular, the radiative acceleration possibly builds up a dusty wall, which 'shades' the nucleus in edge-on views. This provides another version of the model for the formation of an obscuring torus.  相似文献   

15.
Using 2D magnetohydrodynamic (MHD) numerical simulations performed with two different finite-difference Eulerian codes, we analyse the effect that a toroidal magnetic field has on low-mass planet migration in non-turbulent protoplanetary discs. The presence of the magnetic field modifies the waves that can propagate in the disc. In agreement with a recent linear analysis, we find that two magnetic resonances develop on both sides of the planet orbit, which contribute to a significant global torque. In order to measure the torque exerted by the disc on the planet, we perform simulations in which the latter is either fixed on a circular orbit or allowed to migrate. For a     planet, when the ratio β between the square of the sound speed and that of the Alfven speed at the location of the planet is equal to 2, we find inward migration when the magnetic field   B φ  is uniform in the disc, reduced migration when   B φ  decreases as   r −1  and outward migration when   B φ  decreases as   r −2  . These results are in agreement with predictions from the linear analysis. Taken as a whole, our results confirm that even a subthermal stable field can stop inward migration of an earth-like planet.  相似文献   

16.
So far, six mechanisms have been proposed to account for the Galactic disc heating. Of these, the most important appear to be a combination of scattering of stars by molecular clouds and by spiral arms. We study a further mechanism, namely the repeated disc impact of the original Galactic globular cluster population up to the present. We find that globular clusters could have contributed at most a small fraction of the current vertical energy of the disc, as they could heat the whole disc to  σ z = 5.5 km s−1  (c.f. the observed 18 and 39 km s−1 for the thick and thin discs, respectively). We find that the rate of rise of disc heat (  α= 0.22  in  σ z ∼ t α  with t being time) is close to that found for scattering by molecular clouds.  相似文献   

17.
Temporal properties of short gamma-ray bursts   总被引:1,自引:0,他引:1  
We analyse a sample of bright short bursts from the BATSE 4B-catalog and find that many short bursts are highly variable  ( δt min/ T ≪1  , where δt min is the shortest pulse duration and T is the burst duration). This indicates that it is unlikely that short bursts are produced by external shocks. We also analyse the available (first  1–2 s)  high-resolution Time Tagged Events (TTE) data of some of the long bursts. We find that variability on a 10-ms time-scale is common in long bursts. This result shows that some long bursts are even more variable than it was thought before  ( δt min/ T ≈10-4–10-3)  .  相似文献   

18.
We present numerical investigations into the formation of massive stars from turbulent cores of density structure  ρ∝ r −1.5  . The results of five hydrodynamical simulations are described, following the collapse of the core, fragmentation and the formation of small clusters of protostars. We generate two different initial turbulent velocity fields corresponding to power-law spectra   P ∝ k −4  and   P ∝ k −3.5  , and we apply two different initial core radii. Calculations are included for both completely isothermal collapse, and a non-isothermal equation of state above a critical density  (10−14 g cm−3)  . Our calculations reveal the preference of fragmentation over monolithic star formation in turbulent cores. Fragmentation was prevalent in all the isothermal cases. Although disc fragmentation was largely suppressed in the non-isothermal runs due to the small dynamic range between the initial density and the critical density, our results show that some fragmentation still persisted. This is inconsistent with previous suggestions that turbulent cores result in the formation of a single massive star. We conclude that turbulence cannot be measured as an isotropic pressure term.  相似文献   

19.
X-ray reflection spectra from photoionized accretion discs in active galaxies are presented for a wide range of illumination conditions. The energy, equivalent width (EW) and flux of the Fe K α line are shown to depend strongly on the ratio of illuminating flux to disc flux,   F x/ F disc  , the photon index of the irradiating power law, Γ, and the incidence angle of the radiation, i . When   F x/ F disc≤2  a neutral Fe K α line is prominent for all but the largest values of Γ. At higher illuminating fluxes an He-like Fe K α line at 6.7 keV dominates the line complex. With a high-energy cut-off of 100 keV, the thermal ionization instability seems to suppress the ionized Fe K α line when  Γ≤1.6  . The Fe K α line flux correlates with   F x/ F disc  , but the dependence weakens as iron becomes fully ionized. The EW is roughly constant when   F x/ F disc  is low and a neutral line dominates, but then declines as the line progresses through higher ionization stages. There is a strong positive correlation between the Fe K α EW and Γ when the line energy is at 6.7 keV, and a slight negative one when it is at 6.4 keV. This is a potential observational diagnostic of the ionization state of the disc. Observations of the broad Fe K α line, which take into account any narrow component, would be able to test these predictions. Ionized Fe K α lines at 6.7 keV are predicted to be common in a simple magnetic flare geometry. A model that includes multiple ionization gradients on the disc is postulated to reconcile the results with observations.  相似文献   

20.
We present 2.5D time-dependent simulations of the non-linear evolution of non-relativistic outflows from the surface of Keplerian accretion discs. The gas is accelerated from the surface of the disc (which is a fixed platform in these simulations) into a cold corona in stable hydrostatic equilibrium. We explore the dependence of the resulting jet characteristics upon the mass loading of the winds. Two initial configurations of the threading disc magnetic field are studied: a potential field and a uniform vertical field configuration.
We show that the nature of the resulting highly collimated, jet-like outflows (steady or episodic) is determined by the mass load of the disc wind. The mass load controls the interplay between the collimating effects of the toroidal field and the kinetic energy density in the outflow. In this regard, we demonstrate that the onset of episodic behaviour of jets appears to be determined by the quantity     which compares the speed for a toroidal Alfvén wave to cross the diameter of the jet, with the flow speed v p along the jet. This quantity decreases with increasing load. For sufficiently large N (small mass loads), disturbances appear to grow leading to instabilities and shocks. Knots are then generated and the outflow becomes episodic. These effects are qualitatively independent of the initial magnetic configuration that we employed and are probably generic to a wide variety of magnetized accretion disc models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号