首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wide-angle seismic and gravity data across the Narmada-Son lineament (NSL) in central India are analyzed to determine crustal structure, velocity inhomogeneities and hence constrain the tectonics of the lineament. We present the 2-D crustal velocity structure from deep wide-angle reflection data by using a ray-trace inverse approach. The main result of the study is the delineation of fault-bounded horst raised to a subsurface depth (1.5 km) and the Moho upwarp beneath the NSL. The crust below the basement consists of three layers with velocities of 6.45–6.7, 6.2–6.5 and 6.7–6.95 km/s and interface depths of about 5.5–8.7, 14–17 and 18–23 km along the profile. The low-velocity (6.2–6.5 km/s) layer goes up to a depth of 5 km and becomes the thickest part (13 km), while the overlying high-velocity (6.45–6.7 km/s) layer becomes the thinnest (3 km) and upper boundary lies at a depth of 1.5 km beneath the NSL. The overall uncertainties of various velocity and boundary nodes are of the order of ±0.12 km/s and ±1.40 km, respectively. The up-lifted crustal block and the up-warping Moho beneath the NSL indicate that the north and south faults bounding the NSL are deeply penetrated through which mafic materials from upper mantle have been intruded into the upper crust. Gravity modeling was also undertaken to assess the seismically derived crustal features and to fill the seismic data gap. The lateral and vertical heterogeneous nature of the structure and velocity inhomogeneities in the crust cause instability to the crustal blocks and played an important role in reactivation of the Narmada south fault during the 1997 Jabalpur earthquake.  相似文献   

2.
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced  600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at  730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and  730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

3.
SHRIMP U–Pb zircon age, geochemical and Sm–Nd isotopic data are reported for mid-Neoproterozoic volcanic rocks and mafic intrusions in northern Guangxi (Guibei) and western Hunan (Xiangxi) Provinces along the southern margin of the Yangtze Block. The mafic igneous rocks studied are generally synchronous, dated at  765 Ma. The least-contaminated dolerite samples from Xiangxi are characterized by high εNd(T) value of 3.3 to 5.3 and OIB-type geochemical features, indicating that they were derived from an OIB-like mantle source in a continental rift setting. The spilites and gabbros in Guibei show basaltic compositions transitional between the tholeiitic and calc-alkaline series. Despite depletion in Nb and Ta relative to La and Th, they have Zr/Sm = 27–35 and Ti/V = 30–40, affinitive to intraplate basalts. Their εNd(T) values are variable, ranging from − 1.2 to 3.2 for the spilites and from − 1.7 to 2.9 for the gabbros, suggesting that these spilites and gabbros crystallized from crustal-contaminated mafic magmas derived from a metasomatised subcontinental lithospheric mantle source. We conclude that the  765 Ma mafic magmatic rocks in Guibei and Xiangxi were formed in a single continental rift setting as part of the broadly concurrent  780–750 Ma rift magmatism over much of South China, which may be related to the plume activities during the breakup of Rodinia.  相似文献   

4.
We have studied seismic surface waves of 255 shallow regional earthquakes recently recorded at GEOFON station ISP (Isparta, Turkey) and have selected these 52 recordings with high signal-to-noise ratio for further analysis. An attempt was made by the simultaneous use of the Rayleigh and Love surface wave data to interpret the planar crust and uppermost mantle velocity structure beneath the Anatolian plate using a differential least-square inversion technique. The shear-wave velocities near the surface show a gradational change from approximately 2.2 to 3.6 km s− 1 in the depth range 0–10 km. The mid-crustal depth range indicating a weakly developed low velocity zone has shear-wave velocities around 3.55 km s− 1. The Moho discontinuity characterizing the crust–mantle velocity transition appears somewhat gradual between the depth range  25–45 km. The surface waves approaching from the northern Anatolia are estimated to travel a crustal thickness of  33 km whilst those from the southwestern Anatolia and part of east Mediterranean Sea indicate a thicker crust at  37 km. The eastern Anatolia events traveled even thicker crust at  41 km. A low sub-Moho velocity is estimated at  4.27 km s− 1, although consistent with other similar studies in the region. The current velocities are considerably slower than indicated by the Preliminary Reference Earth Model (PREM) in almost all depth ranges.  相似文献   

5.
Reprocessing of industry deep seismic reflection data (Ramnicu Sarat and Braila profiles) from the SE Carpathian foreland of Romania provides important new constraints on geodynamic models for the origin of the intermediate depth Vrancea Seismogenic Zone (VSZ). Mantle (70–200 km) earthquakes of the VSZ are characterized by high magnitudes (greater than 6.5), frequent occurrence rates (approximately 25 years), and confinement in a very narrow (30 × 70 × 200 km3) near vertical zone atypical for a Wadati–Benioff plane, located in front of the orogen. These two deep (20 s) seismic reflection profiles (70 km length across the foreland) reveal (1) a high-amplitude, gently east-dipping reflection across most of the section from what we interpret to be the Moho at  15 s (40–42 km) on the Ramnicu Sarat line to  16 s (47–48 km) on the Braila line, (2) a thick sedimentary cover increasing in thickness from east (1 s;  800 m) to west (7.5 s; 14 km), (3) an eastward increase in crustal thickness from 38 km (near VSZ) to  45 km, (4) seismic and topographic evidence for a newly imaged, possibly seismically active basement fault with a surface offset of 30 m observed on the Ramnicu Sarat line, (5) a lack of notable west-dipping structures in the crust and across the Moho, and (6) variable displacements on Peceneaga–Camena Fault of  5 km at Moho and  200 m at the basement–sedimentary cover contact.These observations appear to argue against recent models for west-dipping subduction of oceanic lithosphere at or in the vicinity of the Vrancea Seismogenic Zone given the lack of west-dipping fabrics in the lower crust and across the crust–mantle boundary. Consequently, one possible explanation for the geodynamic origin of VSZ could be partial delamination of the continental lithosphere in an intra-plate setting along a sub-horizontal lithospheric interface in the Carpathian hinterland that likely involves remnant lithospheric coupling between the crust and uppermost mantle in the foreland.  相似文献   

6.
In order to better understand the long-term speciation and fractionation of Zn in soils, we investigated three soils naturally enriched in Zn (237–864 mg/kg Zn) from the weathering of Zn-rich limestones (40–207 mg/kg Zn) using extended X-ray absorption fine structure (EXAFS) spectroscopy and sequential extractions. The analysis of bulk EXAFS spectra by linear combination fitting (LCF) indicated that Zn in the oolitic limestones was mainly present as Zn-containing calcite (at site Dornach), Zn-containing goethite (Gurnigel) and Zn-containing goethite and sphalerite (Liestal). Correspondingly, extraction of the powdered rocks with 1 M NH4-acetate at pH 6.0 mobilized only minor fractions of Zn from the Gurnigel and Liestal limestones (<30%), but most Zn from the Dornach rock (81%). In the Dornach soil, part of the Zn released from the dissolving limestone was subsequently incorporated into pedogenic hydroxy-interlayered vermiculite (Zn-HIV, 30%) and Zn-containing kaolinite (30%) and adsorbed or complexed by soil organic and inorganic components (40%). The Gurnigel and Liestal soils contained substantial amounts of Zn-containing goethite (50%) stemming from the parent rock, smaller amounts (20%) of Zn-containing kaolinite (and possibly Zn-HIV), as well as adsorbed or complexed Zn-species (30%). In the soil from Liestal, sphalerite was only found in trace amounts, indicating its dissolution during soil formation. In sequential extractions, large percentages of Zn (55–85%) were extracted in recalcitrant extraction steps, confirming that Zn-HIV, Zn-containing kaolinite and Zn-containing goethite are highly resistant to weathering. These Zn-bearing phases thus represent long-term hosts for Zn in soils over thousands of years. The capability of these phases to immobilize Zn in heavily contaminated soils may however be limited by their uptake capacity (especially HIV and kaolinite) or their abundance in soil.  相似文献   

7.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   

8.
Chromium ore was treated to produce ferrochromium from 1979 until 2000 in a smelter in Burrel, 35 km NE of Tirana (Albania). As a consequence, large amounts of solid waste, i.e. slags (about 9.106 m3) have been disposed next to the smelter, disfiguring the landscape. In an attempt to define contaminated sites, heavy metal content of the different sampling media have been compared with respective background samples.In the study area, the determination of background values in soil samples is complicated due to the different geological substrates. Cr and Ni background concentrations in serpentinite-derived soils, west of the smelting plant, are markedly higher than in the Pliocene gravel/sandy soils, where the smelter is situated (Cr 2147 and 193 mg/kg, respectively; Ni 2356 and 264 mg/kg). These values are clearly lower than those encountered around the smelter. Average total Cr and Ni concentrations in soils around the smelter are 3117 and 1243 mg/kg, respectively. The highest concentrations of Cr (up to 2.3 wt.%), were recorded in samples taken near the smelting compartment within the industrial plant and next to the slags clearly indicating that the smelter forms a point source of Cr contamination. The Cr / Fe ratio is the best indicator to differentiate non-polluted (Cr / Fe Serpentinite soil: 130–390; Pliocene soils: < 130) from polluted areas (> 390 smelting nearby of the slags).Cr and Ni values for local backgrounds in stream and overbank sediments were taken in the Mat river 6 km upstream and to the east of the smelter (268 and 430 mg/kg for Cr, and 306 and 604 mg/kg for Ni, respectively). Equivalent sediments taken from the Zalli i Germanit river, which drains the smelter area are respectively 816 and 1126 mg/kg for Cr and 1115 and 1185 mg/kg for Ni.Dust samples, taken from the lofts of houses up to 2 km from the smelter, display high concentrations of Cr, Ni and Zn (average contents of 2899, 436 and 902 mg/kg, respectively). The later concentrations in the dust samples have been confirmed by mineralogical analysis where Cr-bearing mineral phases such as ferrochromium and chromium oxides, clearly relate to the activity of the smelter. Consequently, atmospheric deposition of dust particles forms a serious problem and can also be responsible for the elevated contents encountered in soil samples around the smelter.All these data show that the degree of contamination caused by industrial activity of the Burrel Cr-smelter is severe, although no Cr(VI) was detected in soil water extractions nor in the surface or groundwater where concentrations were < 0.01 mg/kg.  相似文献   

9.
The Vazante Group consists of Precambrian carbonate-dominated platform deposits that extend along more than 300 km in the external zone of the Brasilia Fold Belt of the São Francisco Basin in east central Brazil. The sequence is about 4.8 km thick and contains a preserved glaciomarine diamictite unit (containing dropstone) at the top and a lower diamictite unit at the bottom. Previous C- and Sr-isotope profiles suggested the correlation of the upper diamictite unit with the “Sturtian” glacial event (ca. 750–643 Ma). However, new Re–Os isotope data from the shales associated with the upper diamictites yield radiometric age estimates between 993 ± 46 and 1100 ± 77 Ma. U–Pb measurements on a suite of clear euhedral zircon crystals that were separated from the same shales associated with the upper diamictite and from the arkosic sandstone above the lower diamictite yield ages as young as 988 ± 15 and 1000 ± 25 Ma, respectively. Based on the Re–Os and U–Pb ages, the best age estimate of the Vazante Group is constrained to be 1000–1100 Ma and thus the two diamictite units are not correlative with the Sturtian glaciation(s) but most likely are records of glacial events that occurred during the late Mesoproterozoic.  相似文献   

10.
Retrograded eclogites from the central part of the northern margin of the North China Craton, Hebei Province, China occur as separate tectonic lenses or boundins within garnet–biotite–plagioclase gneisses of the Paleoproterozoic Hongqiyingzi Complex characterized by amphibolite facies paragneisses. The petrographic features and mineralogical compositions represent three main metamorphic stages: (1) the peak eclogite facies stage (P > 1.40–1.50 GPa, T = 680–730 °C), (2) the granulite facies stage and (3) the amphibolite facies stage (P = 0.67–0.81 GPa, T = 530–610 °C) formed during decompression. The major and trace element and Sm–Nd isotopic data suggest that most of the retrograded eclogite samples had protoliths of tholeiitic oceanic crust with geochemical characteristics of mid-ocean ridge basalt (MORB) or island arc tholeiite (IAT) environment, and were contaminated by crustal components during subsequent subduction. Zircon SHRIMP isotopic dating of two different textural varieties of retrograded eclogite defines a weighted mean age of 325 Ma, which is interpreted as the peak metamorphic age of the eclogites and reflects the occurrence of eclogite facies metamorphism related to subduction of Paleo-Asian Oceanic crust beneath the North China Craton during the Late Paleozoic. Finally, we show that the retrograded eclogite from Hebei Province is not related to the Baimashi retrograded eclogite at the northern foot of the Heng Mountains, approximately, 300 km to the southwest.  相似文献   

11.
Jun-Hong Zhao  Mei-Fu Zhou 《Lithos》2008,104(1-4):231-248
Numerous Neoproterozoic felsic and mafic–ultramafic intrusions occur in the Hannan region at the northern margin of the Yangtze Block. Among these, the Wudumen and Erliba plutons consist of granodiorites and have SHRIMP zircon U–Pb ages of  735 Ma. The rocks have high K2O (0.8–3.6 wt.%) and Na2O (4.4–6.4 wt.%) and low MgO (0.4–1.7 wt.%). They also have high Sr/Y (32–209) and (La/Yb)n ratios (4.4–38.6). Their εNd values range from − 0.41 to − 0.92 and zircon initial 176Hf/177Hf ratios from 0.282353 to 0.282581. These geochemical features are similar to those of adakitic rocks produced by partial melting of a thickened lower crust. Our new analytical results, combined with the occurrence of voluminous arc-related mafic–ultramafic intrusions emplaced before 740 Ma, lead us to propose that the crustal evolution in the northern margin of the Yangtze Block during Neoproterozoic involved: (1) rapid crustal growth and thickening by underplating of mafic magmas from the mantle which was modified by materials coming from the subducting oceanic slab from  1.0 to  0.74 Ga, and (2) partial melting of the thickened lower crust due to a thermal anomaly induced by upwelling of asthenosphere through an oceanic slab window, producing the  735 Ma adakitic Wudumen and Erliba plutons. Our model suggests that the crustal thickness was more than 50 km at the northern margin of the Yangtze Block at  735 Ma, and rule out the possibility of a mantle plume impact causing the > 735 Ma magmatism in the region.  相似文献   

12.
A soil-based geochemical survey was carried out in an area of about 350 km2 in northern Kosovo around the Zve?an Pb-Zn smelter. The concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Tl, Th, U, Zn were determined in 452 topsoil and 82 subsoil samples. High contents of Pb, Cd, As, Sb, Zn and Cu were found in topsoil over a vast area including the Ibar and Sitnica river valleys. The highest concentrations were usually measured close to the Zve?an smelter. In some zones, the lead contents in surface soils exceeded 5000 mg/kg. Arsenic and antimony levels were usually more than 200 and 50 mg/kg, respectively, while cadmium contents were in the range 5-20 mg/kg. South of the Zve?an area, lead, antimony and cadmium pollution was strong in the densely populated urban area of Kosovska Mitrovica and along the agricultural alluvial plain of the Sitnica River. Depending on the chemical element, the pollution extended 15-22 km north and south of the Zve?an smelter. There was a progressive decrease of heavy element concentrations with increasing distance from the smelting plant. The contents of Pb, Zn, Cu, As, Cd, Sb significantly decreased with soil depth; in fact, the pollution only affected the upper 50 cm of soil. Crops were affected by soil pollution and many food-stuffs exceeded the EU standards. Suggestions for soil remediation are given.  相似文献   

13.
We used ICP–MS to measure the elemental concentrations and isotopic abundances of Cu and Zn in: nine Ti-rich lunar basalts (10017, 10022, 10024, 10057, 70215, 71055, 74255, 75055, and 75075); size-separated samples prepared by sieving of pyroclastic black glass 74001, orange glass 74022, and the lunar soils 15021, 15231, 70181, and 79221; a basalt from the Piton des Neiges volcano, Reunion Island; two samples of Pele’s hairs from the Nyiragongo volcano, Democratic Republic of Congo, and the martian meteorite Zagami.The isotopic fractionation of zinc in lunar basalts and Zagami is mass dependent relative to a terrestrial standard (JMC 400882B). These and published results imply that lunar, terrestrial, meteoritic, and perhaps martian zinc all come from one or more reservoirs linked by mass-dependent fractionation processes. Relative to terrestrial basalts, Ti-rich lunar basalts are enriched in the heavier isotopes of Cu and Zn: we find for Ti-rich lunar basalts the following ranges and averages ±1 − σ (‰): δ65Cu/63Cu ≡ δ65Cu, 0.1–1.4, 0.5 ± 0.1‰ (N = 7); δ66Zn/64Zn ≡ δ66Zn = 0.2–1.9, 1.2 ± 0.2‰ (N = 8; 10017 excluded). For two terrestrial samples, we find δ66Zn  +0.3‰ and δ65Cu  0‰, which are consistent with published values. The differences between the lunar basalts and terrestrial basalts could reflect minor, planetary-scale vaporization or igneous processes on the Moon.Data for size separates of the pyroclastic glasses 74001 and 74220 confirm the well-known surface correlation of Cu and Zn, but modeling calculations reveal no sharp differences between either the elemental ratios or the isotopic composition of grain interiors and exteriors. The absence of such differences indicates that the isotopic compositions for bulk samples are dominated by a light-isotope-rich surface component.Data for size separates of lunar soils also confirm the surface correlation of Cu and Zn, but an enrichment of heavy rather than light isotopes. Averages for bulk lunar soils from this work and the literature are (‰): δ65Cu, from 1.4 to 4.1, average 3.0 ± 0.3 (N = 9); δ66Zn, from 2.2 to 6.4, average 4.0 ± 0.3 (N = 14). As with the glasses, in all but soil 15231 our data show no strong differences between the isotopic composition of soil sub-samples with small and large grains.The size of the isotopic fractionation inferred for the surface component in the soils is 3× smaller than predicted by a published model of sputtering primarily by solar particles. At the same time, the observed fractionation is larger than predicted by calculations based on a model of micrometeorite impact heating and hydrodynamic quenching. Because impact heating appears unable to explain the observations, we conclude that sputtering must be important even though samples with very large isotopic fractionation of Cu and Zn have not yet been found.  相似文献   

14.
It has been generally accepted that the South China Block was formed through amalgamation of the Yangtze and Cathaysia Blocks during the Proterozoic Sibaoan orogenesis, but the timing and kinematics of the Sibao orogeny are still not well constrained. We report here SHRIMP U–Pb zircon geochronological and geochemical data for the Taohong and Xiqiu tonalite–granodiorite stocks from northeastern Zhejiang, southeastern margin of the Yangtze Block. Our data demonstrate that these rocks, dated at 913 ± 15 Ma and 905 ± 14 Ma, are typical amphibole-rich calc-alkaline granitoids formed in an active continental margin. Combined with previously reported isotopic dates for the  1.0 Ga ophiolites and  0.97 Ga adakitic rocks from northeastern Jiangxi, the timing of the Sibao orogenesis is thus believed to be between  1.0 and  0.9 Ga in its eastern segment. It is noted that the Sibao orogeny in South China is in general contemporaneous with some other early Neoproterozoic (1.0–0.9 Ga) orogenic belts such as the Eastern Ghats Belt of India and the Rayner Province in East Antarctica, indicating that the assembly of Rodinia was not finally completed until  0.9 Ga.  相似文献   

15.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

16.
Adakitic intrusive rocks of  430–450 Ma were discovered in the North Qilian orogenic belt, the western section of the Central Orogenic System (COS) in China. These adakitic rocks were lower crust melts rather than slab melts as indicated by their crustal Ce/Pb, Nb/U, Ti/Eu, and Nd/Sm ratios and radiogenically enriched (87Sr/86Sr)i of 0.7053–0.7066 and εNd(t) of − 0.9 to − 1.7. While they are all characterized by low Yb (< 1.1 ppm) and Y (< 11.5 ppm) abundances with high Sr/Y (> 65) and (La/Yb)N (> 13.7) ratios, these adakitic rocks are classified into the low-MgO–Ni–Cr and high-MgO–Ni–Cr groups. The low-MgO samples were derived from partial melting of thickened lower crust, whereas the high-MgO samples were melts from delaminated lower crust, which subsequently interacted with mantle peridotite upon ascent. Adakitic rocks from the adjacent North Qinling orogenic belt also originated from thickened lower crust at  430 Ma. In addition, the North Qilian and North Qinling orogenic belts both consist of lithological assemblages varying from subduction-accretionary complexes at south to central arc assemblages, which include adakitic rocks, then to backarc phases at north. Such a sequence reflects northward subduction of the Qilian and Qinling oceans. In these two orogenic belts, the occurrence of adakitic rocks of common origin and ages together with the similarities in tectonic configurations and lithological assemblages are considered to be the evidence for the continuity between eastern Qilian and western Qinling, forming a > 1000 km Early Paleozoic orogenic belt. In such a tectonic configuration, the Qilian and Qinling oceans that subducted from south possibly represent parts of the large “Proto-Tethyan Ocean”. This inference is supported by the coexistence of Early Paleozoic coral and trilobite specimens from Asia, America and Australia in the North Qilian orogenic belt. Post-400 Ma volcanic rocks occur in the North Qinling orogenic belt but are absent in the North Qilian orogenic belt, indicating that these two orogenic belts underwent distinct evolution history after the closure of the Proto-Tethyan Ocean ( 420 Ma).  相似文献   

17.
18.
The crystalline terrane of the Tongbai–Dabie region, central China, comprising the Earth's largest ultrahigh-pressure (UHP) exposure was formed during Triassic collision between the Sino–Korean and Yangtze cratons. New apatite fission-track (AFT) data presented here from the UHP terrane, extends over a significantly greater area than reported in previous studies, and includes the (eastern) Dabie, the Hong'an (northwestern Dabie) and Tongbai regions. The new data yield ages ranging from 44 ± 3 to 142 ± 36 Ma and mean track lengths between 10 and 14.4 μm. Thermal history models based on the AFT data taken together with published 40Ar/39Ar, K–Ar, apatite and zircon (U–Th)/He and U–Pb data, exhibit a three-stage cooling pattern that is similar across the study region, commencing with an Early Cretaceous rapid cooling event, followed by a period of relative thermal stability during which rocks remained at temperatures within the AFT partial annealing zone (60–110 °C) and ending with a possible renewed phase of accelerated cooling during Pliocene to Recent time. The first cooling phase followed large-scale transtensional deformation between 140 and 110 Ma and is related to Early Cretaceous eastward tectonic escape and Pacific back arc extension. Between this phase and the subsequent slow cooling phase, a transition period from 120 to 80 Ma (to 70 to 45 Ma along the Tan–Lu fault) was characterised by a relatively low cooling rate (3–5 °C/Ma). This transition is likely related to a tectonic response associated with the mid-Cretaceous subduction of the Izanagi–Pacific plate as well as lithospheric extension and thinning in eastern Asia. The present regional AFT age pattern is therefore basically controlled by the Early Cretaceous rapid cooling event, but finally shaped through active Cenozoic faulting. Following the transition phase the subsequent slow cooling phase pattern implies a net reduction in horizontal compressional stress corresponding to increased extension rates along the continental margin due to the decrease in plate convergence. Modelling of the AFT data suggests a possible Pliocene–Recent cooling episode, which may be supported by increased rates of sedimentation observed in adjacent basins. This cooling phase may be interpreted as a response to the far-field effects of the frontal India–Eurasia collision to the west. Approximate estimates suggest that the total amount of post 120 Ma denudation across the UHP orogen ranged from 2.4 to 13.2 km for different tectonic blocks and ranged from 0.8 to 9.7 km during the Cretaceous to between 1.7 and 3.8 km during the Cenozoic.  相似文献   

19.
The Palaeoproterozoic Svecofennian crust in southern and central Fennoscandia was established about 1.8 Ga ago after a prolonged history of accretion and intrusion. During late stages of the Svecofennian orogeny, deformation was partitioned into several crustal-scale shear zones in present-day Finland, Sweden and Estonia. One such major ductile deformation zone, ‘the South Finland shear zone’ (SFSZ) extends for almost 200 km through the Åland archipelago in southwestern Finland, and further along the southern and southwestern coast of Finland. This more than a kilometer wide transpressional zone appears to have been repeatedly reactivated. The deformation started with a period of regional, ductile dextral shearing of igneous rocks, producing striped granodioritic and tonalitic gneisses. The ductile phases are locally overprinted and followed by ductile to semi-ductile deformation evidenced by mylonite zones of variable width. The last stage of tectonic activity along the shear zone is recorded by pseudotachylites. Within this study, we dated zircons (SIMS U–Pb) and titanites (ID-TIMS U–Pb) from eight rock samples, and two pseudotachylite whole-rock samples (40Ar/39Ar) in order to reconstruct the deformation and (re)activation history of the shear zone.The results suggest that the medium-grained gneisses underwent three distinct deformation phases separated by time intervals without regional deformation. The ductile deformation within the study area initiated at 1.85 Ga. A second, more intensive deformation phase existed around 1.83 Ga, by which the shear zone was already well developed. Finally, the last ductile event is recorded by 1.79 Ga metamorphic titanites in relatively granoblastic granitoid gneisses that nevertheless already display protomylonitic textures, suggesting the initiation of large-scale mylonitisation around or soon after this time. The age of a pseudotachylite sample and, hence, the brittle deformation is bracketed between 1.78 and 1.58 Ga based on the age of pegmatites cut by pseudotachylites as well as 40Ar/39Ar minimum ages for the pseudotachylite, respectively. The data imply that the rocks within the study area entered the ductile–brittle transition zone due to rapid cooling and exhumation of the crust after 1.79 Ga.  相似文献   

20.
Elemental, Sr–Nd–Pb isotopic and geochronological data are presented for the Taishan high-mg dioritic rocks (western Shandong) from the Eastern Block of the North China Craton in order to better understand the Archean tectonic evolution and crustal growth of the Craton. The rocks gave the zircon U–Pb age of 2536–2540 Ma. They show low SiO2 and Al2O3 contents, high MgO, mg-number, Cr, Ni, Y, Yb, Sr and Ba, enriched LILEs and LREEs, depleted HFSEs and HREEs with (Nb/La)N of 0.07–0.12. They exhibit Nd(t) values of 1.53–3.30, (206Pb/204Pb)i of 11.20–15.30, (207Pb/204Pb)i of 14.14–14.83 and (208Pb/204Pb)I of 31.10–33.93. Such geochemical features with an affinity to both a mantle- and crust-like source for the Taishan dioritic rocks are similar to those of the typical Archean sanukitoids, suggesting an origination from a sub-arc mantle wedge variably metasomatized by the slab-derived dehydration fluids and melts before 50–100 Ma of the emplacement of the Taishan sanukitoid plutons. It is proposed that the Taishan sanukitoids resulted from the sudden change of the downgoing slab from a flat subduction to subsequently steeper subduction in an active continental margin regime during Neoarchean time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号