首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A catalogue of a collection of meteorites is presented. The catalogue is complete through 1995 December. It includes 206 stony meteorites, 47 iron meteorites, 18 stony-iron meteorites, and 30 tektites, natural glasses, etc.  相似文献   

2.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   

3.
Abstract— Antarctic meteorites have been and are being well studied but the potential for glaciological and climatological information in the sites where they are found is only beginning to be realized. To date, meteorite stranding surfaces have been identified only in East Antarctica: (1) The MacKay Glacier/David Glacier region contains the Allan Hills and the Reckling Moraine/Elephant Moraine stranding surfaces. Because the Allan Hills Main Icefield has a large proportion of meteorites with long terrestrial ages, these concentrations of meteorites must have had catchment areas extending well inland, in contrast to the present. Where known, bedrock topography is mesa-like in form and influences ice flow directions. Ice levels at the Allan Hills may have been higher by 50–100 m in the past. Reckling Moraine and Elephant Moraine are located on a long patch of ice running westward from Reckling Peak; the ice appears to be pouring over a bedrock escarpment. (2) In North Victoria Land, ice diverges around Frontier Mountain and flows into a site behind the barrier where ablation occurs extensively. It is proposed that meteorites and rocks were dumped by ice flow at the mouth of a valley in the lee of the mountain at the site where a meltwater pond existed, in a depression produced by ablation. Later, the pond migrated headward along the valley to a point where it is today, leaving a morainal deposit with the meteorites at a higher level. (3) Between the Beardmore and Law Glaciers, ice flows sluggishly into the southwestern margin of the Walcott Névé. Northeastern sections of the Walcott are virtually barren of meteorites. The entering Plateau ice is diverted northward to flow along the base of Lewis Cliff. This flow apparently terminates in an ice tongue protruding into a vast moraine, where a very large concentration of meteorites was found on the ice. This final segment of flowing ice is called the Lewis Cliff Ice Tongue. Meteorite Moraine, a subsidiary occurrence 2 km to the northeast, is also found against morainal deposits. The origin of the moraines and the history of meteorite concentration at this site is the subject of some debate. (4) The Transantarctic Mountains are submerged along one segment many hundreds of km in length by ice flowing off the Polar Plateau. The Thiel Mountains, Pecora Escarpment and Patuxent Range are the only surface indications of the underlying mountains along this interval, and meteorite stranding surfaces are found at each of these sites. Little is yet known about ice dynamics at these sites. (5) The immense Yamato Mountains meteorite stranding surface covers an area of about 4000 km2. So far, most meteorites have been recovered in the upper reaches of this blue ice field, where ice flow is slowed by outlying subice barriers of the Yamato Mountains. Individual massifs in this range extend northward over 50 km, and the Yamato Meteorite Icefield loses 1100 m in elevation over this distance. (6) The Sør Rondane Mountains form a barrier to ice flow off the Polar Plateau. The major meteorite stranding surface associated with this barrier is the Nansenisen Icefield, a large ablation area about 50 km upstream of the mountains. The existence of a meteorite stranding surface at this site has not been explained so far. Most meteorite stranding surfaces have been functioning for a long time. They are sites where net ablation of the surface is occurring; the ice at these sites is stagnant or flowing only slowly, and the numbers of meteorites with great terrestrial ages decrease exponentially. Concentration mechanisms operating at these sites involve ablation, direct infall, time, low temperatures, moderate weathering and wind ablation. Detrimental to concentration are ice flow out of the area and extreme weathering. In spite of the fact that the Antarctic Ice Sheet is thought to be over 10 Ma old, we do not find stranding surfaces with meteorites having greater terrestrial ages than 1 Ma. This suggests that stranding surfaces are transient features, affected on a continental scale by possible extreme warming during late Pliocene and on a smaller scale by regional changes that produce differential effects between icefields. The latter effect is suggested by differences in the average terrestrial age of meteorites at different stranding surfaces. In either case, these sites seem to appear as a result of thinning near the edges of the ice sheet, and stratigraphic sequences may be exposed in the ice at stranding surfaces. We review five models for the production of meteorite stranding surfaces: (1) simple deflation of the ice sheet, in which ablation removes great thicknesses of overlying ice, exposing the contained meteorites while allowing direct falls to accumulate, (2) simple accumulation of direct falls on a bare ice surface that is not deflating, (3) ablation of ice trapped against a barrier, in which meteorites accumulate by direct infall while inflowing ice contributes meteorites by ablation discovery, (4) deceleration of ice by a subice barrier, which allows ablation discovery of meteorites in incoming ice and accumulation of other meteorites on the surface by direct infall and (5) stagnation of ice by encounter with an ice mass able to produce an opposing flow vector, in which ablation discovery and direct infall accumulation processes operate to build the meteorite concentration.  相似文献   

4.
Abstract— The Julesburg chondrite, a single stone weighing 57.9 kg, was found in 1983 in Sedgewick County, Colorado, USA. It contains abundant chondrules and chondrule fragments but little fine-grained matrix. The olivine composition ranges from Fa1 to Fa25 but a frequency plot of olivine compositions is strongly peaked at Fa23. The low-Ca pyroxenes range from Fs3 to Fs28 and show no dominant composition. The abundance of clearly defined chondrules, the heterogeneity of the silicates and the presence of glass within chondrules indicate a type 3 chondrite, refined by thermoluminescence data to 3.6. The total iron content of 20.46% is indicative of an L-group stone. The low noble gas retention ages indicate that this meteorite was outgassed late in its history. This is supported by petrographic evidence of brecciation and shock. Aluminum-rich spinels within chondrules and inclusions contain up to 2.6% ZnO which suggests that they formed in a volatile-rich environment.  相似文献   

5.
Abstract The Chervettaz meteorite was an observed fall on 1901 November 30. Our study confirms the previous classification as an L5 chondrite. Weak deformations indicate stage S3 of shock deformations.  相似文献   

6.
7.
This issue of Meteoritics & Planetary Science celebrates the science of the Winchcombe meteorite, which fell to Earth on the 28th February 2021 close to the town of Winchcombe, Gloucestershire in the UK.  相似文献   

8.
9.
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density 〈ρbulk〉=3.46±0.07 g/cm3, grain density 〈ρgrain〉=3.53±0.08 g/cm3, porosity 〈P(%)〉=2.46±1.39, and bulk mass magnetic susceptibility 〈log χ〉=5.23±0.11. Measurements of the specific heat capacity for a 3.01-g Gao-Guenie sample, a 61.37-g Gao-Guenie sample, a 62.35-g Jilin H5 chondrite meteorite sample, and a 51.37-g Sikhote-Alin IIAB Iron meteorite sample are also presented. Temperature interpolation formula are further provided for the specific heat capacity, thermal conductivity, and thermal diffusivity of the 3.01-g Gao-Guenie sample in the temperature range 300<T (K)<800. We briefly review the possible effects of the newly deduced specific heat and thermal conductivity values on the ablation of meteoroids within the Earth's atmosphere, the modeling of asteroid interiors and the orbital evolution of meteoroids through the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect.  相似文献   

10.
Using the classification scheme for planetary nebulae in the Magellanic Clouds using four criteria proposed in Paper I, all nebulae are divided into three classes on the basis of the mass of their central stars. The features of individual chemical abundances in the Magellanic Cloud planetary nebulae and the way in which these differ from the galactic planetary nebulae are investigated separately for each class of nebulae. The role of CN and ON cycling in intermediate mass star evolution is discussed.  相似文献   

11.
A classification scheme for planetary nebulae in the Magellanic Clouds using four key criteria is suggested. All nebulae can then be divided into three classes. The features of physical parameters and evolution of the Magellanic Cloud planetary nebulae and the way in which they differ from galactic planetary nebulae are investigated separately for each class of nebulae.  相似文献   

12.
Abstract— The Lafayette meteorite, a nakhlite of the SNC (Martian?) group, contains hydrous alteration materials as intergranular films and as veinlets and patches replacing olivine, pyroxenes, and high-Si glass. The alteration materials (“iddingsite”) consist of ferroan smectite clays, magnetite (or maghemite), and ferrihydrite, as shown by SEM and TEM. Three varieties of veinlets are present and formed in the order: coarse phyllosilicate; fine-grained (phyllosilicate-oxide), and porous oxide. Veinlets of fine-grained material cross-cut coarse phyllosilicate veinlets. The alteration materials are preterrestrial, as they are older than Lafayette's fusion crust, which is glassy and not affected by any alterations. Approaching the crust, the veinlets are progressively modified to the point of melting, and progressively depleted in adsorbed volatile constituents (S, Cl, and P). Bulk compositions of the alteration veinlets (SEM and TEM EDX) are consistent with the observed mineralogy, and suggest: that the smectite contains significant adsorbed S and Cl; that the ferrihydrite contains significant adsorbed S, but not Cl; that rare grains of sulfate (Ca?) and chloride (Na or K?) are present; and that the compositions of the alteration materials are approximated by Lafayette's olivine + high-Si glass + water. We estimate that Lafayette's alteration materials formed at less than 100 °C. The oxidation potential of the water was near or slightly below that of the magnetite-hematite buffer. The presence of sulfate and chloride in discrete phases and as adsorbates on ferrihydrite and smectite suggests that the altering solutions were saline. However, relatively little mass was transferred into or out of Lafayette because the bulk composition of the alteration materials is nearly isochemical with a mixture of magmatic silicate phases and water. Chemical transport within Lafayette was also limited, as alteration materials preserve some chemical signature of their host minerals. Presence of alteration materials along only some grain boundaries and some cracks suggests that Lafayette was not soaked in fluid. These last two inferences suggest that the alteration of Lafayette took place during episodic infiltrations of small volumes of saline water.  相似文献   

13.
Abstract— The Peekskill H6 meteorite fell on 1992 October 9. We report extensive measurements of cosmic-ray produced stable nuclides of He, Ne, and Ar, of the radionuclides 22Na, 60Co, 14C, 36Cl, 26Al, and 10Be, and of cosmic-ray track densities. After correction for shielding via the 22Ne/21Ne ratio, the concentrations of cosmic-ray produced 3He, 21Ne and 38Ar give an average exposure age of 25 Ma, which is considered to be a lower limit on the true value. The 10Be/21Ne age is 32 Ma and falls onto a peak in the H-chondrite exposure age distribution. The activities of 26Al, 14C, 36Cl, and 10Be are all close to the maximum values expected for H-chondrites. Together with cosmic-ray track densities and the 22Ne/21Ne ratio, these radionuclide data place the samples at a depth >20 cm in a meteoroid with a radius >40 cm. In contrast, the 60Co activity requires a near-surface location and/or a much smaller body. Calculations show that a flattened geometry for the Peekskill meteoroid does not explain the observations in the context of a one-stage irradiation. A two-stage model can account for the data. We estimate an upper bound of 70 cm on the radius of the earlier stage of irradiation and conclude that Peekskill's radius was <70 cm when it entered the Earth's atmosphere. This size limit is somewhat smaller than the dynamic determinations (Brown et al., 1994).  相似文献   

14.
Abstract– The 45 m in diameter Kamil impact crater was formed <5000 yr ago in the eastern Sahara, close to the southern border of modern Egypt. The original features of this structure, including thousands of fragments of the meteorite impactor, are extremely well preserved. With the exception of a single 83 kg regmaglypted individual, all specimens of Gebel Kamil (the iron meteorite that formed the Kamil crater) are explosion fragments weighing from <1 g to 34 kg. Gebel Kamil is an ungrouped Ni‐rich (about 20 wt% Ni) ataxite characterized by high Ge and Ga contents (approximately 120 μg g?1 and approximately 50 μg g?1, respectively) and by a very fine‐grained duplex plessite metal matrix. Accessory mineral phases in Gebel Kamil are schreibersite, troilite, daubréelite, and native copper. Meteorite fragments are cross‐cut by curvilinear shear bands formed during the explosive terrestrial impact. A systematic search around the crater revealed that meteorite fragments have a highly asymmetric distribution, with greater concentrations in the southeast sector and a broad maximum in meteorite concentration in the 125–160° N sector at about 200 m from the crater rim. The total mass of shrapnel specimens >10 g, inferred from the density map compiled in this study is 3400 kg. Field data indicate that the iron bolide approached the Earth’s crust from the northwest (305–340° N), travelling along a moderately oblique trajectory. Upon hypervelocity impact, the projectile was disrupted into thousands of fragments. Shattering was accompanied by some melting of the projectile and of the quartz‐arenite target rocks, which also suffered shock metamorphism.  相似文献   

15.
The Twannberg iron meteorite is one out of only six members of the group IIG. The combined noble gas and radionuclide data obtained in this new systematic study indicate that Twannberg with its ~570 recently recovered specimens was a large object with a preatmospheric radius in the range of ~2 m, which corresponds to ~250 × 103 kg. The cosmic‐ray exposure age for Twannberg is 182 ± 45 Ma. The most surprising result is the long terrestrial age of Tterr =  ka, which is unexpected considering the humid conditions in Switzerland. However, this age is in accord with glaciation events, indicating that the less shielded samples from Mt. Sujet were found close to the position of the original strewn field, whereas the samples from Gruebmatt and Twannbach, which are from more shielded positions, were glacially transported to the east–northeast during the second last ice age (185–130 ka ago) from an original position west of Mt. Sujet.  相似文献   

16.
We describe the geological, morphological, and climatic settings of two new meteorite collections from Atacama (Chile). The “El Médano collection” was recovered by systematic on‐foot search in El Médano and Caleta el Cobre dense collection areas and is composed of 213 meteorites before pairing, 142 after pairing. The “private collection” has been recovered by car by three private hunters and consists of 213 meteorites. Similar to other hot desert finds, and contrary to the falls and Antarctica finds, both collections show an overabundance of H chondrites. A recovery density can be calculated only for the El Médano collection and gives 251 and 168 meteorites larger than 10 g km?2, before and after pairing, respectively. It is by far the densest collection area described in hot deserts. The Atacama Desert is known to have been hyperarid for a long period of time and, based on cosmic‐ray exposure ages on the order of 1–10 Ma, to have been stable over a period of time of several million years. Such a high meteorite concentration might be explained invoking either a yet unclear concentration mechanism (possibly related to downslope creeping) or a previously underestimated meteorite flux in previous studies or an average terrestrial age over 2 Myr. This last hypothesis is supported by the high weathering grade of meteorites and by the common terrestrial fragmentation (with fragments scattered over a few meters) of recovered meteorites.  相似文献   

17.
The Winchcombe meteorite fell on February 28, 2021 and was the first recovered meteorite fall in the UK for 30 years, and the first UK carbonaceous chondrite. The meteorite was widely observed by meteor camera networks, doorbell cameras, and eyewitnesses, and 213.5 g (around 35% of the final recovered mass) was collected quickly—within 12 h—of its fall. It, therefore, represents an opportunity to study very pristine extra-terrestrial material and requires appropriate careful curation. The meteorite fell in a narrow (600 m across) strewn field ~8.5 km long and oriented approximately east–west, with the largest single fragment at the farthest (east) end in the town of Winchcombe, Gloucestershire. Of the total known mass of 602 g, around 525 g is curated at the Natural History Museum, London. A sample analysis plan was devised within a month of the fall to enable scientists in the UK and beyond to quickly access and analyze fresh material. The sample is stored long term in a nitrogen atmosphere glove box. Preliminary macroscopic and electron microscopic examinations show it to be a CM2 chondrite, and despite an early search, no fragile minerals, such as halite, sulfur, etc., were observed.  相似文献   

18.
The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to (1.2-) and a long-wave (LW) channel that covers 250- (5.5-). Both channels have a uniform spectral resolution of . The instrument field of view FOV is about 1.6° (FWHM) for the Short Wavelength channel (SW) and 2.8° (FWHM) for the Long Wavelength channel (LW) which corresponds to a spatial resolution of 7 and 12 km when Mars is observed from an height of 250  km. PFS can provide unique data necessary to improve our knowledge not only of the atmosphere properties but also about mineralogical composition of the surface and the surface-atmosphere interaction.The SW channel uses a PbSe detector cooled to 200-220 K while the LW channel is based on a pyroelectric (LiTaO3) detector working at room temperature. The intensity of the interferogram is measured every 150 nm of physical mirrors displacement, corresponding to 600 nm optical path difference, by using a laser diode monochromatic light interferogram (a sine wave), whose zero crossings control the double pendulum motion. PFS works primarily around the pericentre of the orbit, only occasionally observing Mars from large distances. Each measurements take 4 s, with a repetition time of 8.5 s. By working roughly 0.6 h around pericentre, a total of 330 measurements per orbit will be acquired 270 looking at Mars and 60 for calibrations. PFS is able to take measurements at all local times, facilitating the retrieval of surface temperatures and atmospheric vertical temperature profiles on both the day and the night side.  相似文献   

19.
Podolak M  Bunch TE  Cassen P  Reynolds RT  Chang S 《Icarus》1990,84(1):254-260
The refractory meteorite inclusions known as CAIs (calcium-aluminum rich inclusions) display melted rims that were produced by thermal events of only a few seconds duration. We show that gas dynamic deceleration in a temporary atmosphere around an accreting parent body, produced by gas release during accretion, could provide a regime of sufficiently high gas density and small scale height to achieve partial melting of the CAIs. In addition, the presence of dust in the atmosphere would increase the gradient of pressure with height (i.e., effectively reduce the scale height), lower the rate of blowoff (thus keeping more gas around the body), as well as allow dust particles to become trapped in the partially melted material as is observed in some cases. Thus, CAIs may be regarded as probes of a primitive atmosphere by virtue of the thermal and mineralogical alteration that occurred upon their passage through the atmosphere.  相似文献   

20.
Abstract— Arguments in favor of the cometary origin of the Tunguska meteorite are adduced along with reasons against the asteroidal hypothesis. A critical analysis is given for the hypotheses by Sekanina (1983) and Chyba et al. (1993). On the basis of the azimuth and inclination of the trajectory of the Tunguska body with plausible values of the geocentric velocity, the semimajor axis of the orbit and its inclination to the ecliptic plane are calculated for this body. It is noted that the theory of the disintegration of large bodies in the atmosphere put forward by Chyba et al. (1993) is crude. Applying more accurate theories (Grigoryan, 1979; Hills and Goda, 1993) as well as taking into account the realistic shape of the body yield for the cometary body lower disruption heights than obtained by Chyba et al. Numerical simulations carried out by Svettsov et al. agree well with the cometary hypothesis and the analytical calculations based on Grigoryan's theory. The asteroidal hypothesis is shown not to be tenable: the complete lack of stony fragments in the region of the catastrophe, cosmochemical data (in particular, the results of an isotope analysis), and some other information contradict this hypothesis. It is shown that stony fragments that would have originated in the explosive disruption of the Tunguska body would not be vaporized by the radiation of the vapor cloud nor as a result of their fall to the Earth's surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号