首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
恒星形成于分子云环境中。近30多年的观测研究使得天文学家对小质量恒星的形成有了相对明确的认识:小质量恒星通过坍缩、吸积和外向流的路标而形成。至于大质量恒星,其形成过程还存在着许多不确定因素,现有的观测证据表明:大质量恒星也可能通过坍缩、吸积和外向流的路标来形成,但也不排除在星团中通过中小质量恒星聚合而成的因素。大质量恒星形成与致密电离氢区(UCHII)成协较好,而与大质量恒星形成区成协的分子云环境中,既有大质量恒星也有小质量恒星形成。综述了恒星形成各个阶段的观测结果和研究现状以及成协的天体物理环境情况。未来的观测和研究重点在于,大质量恒星形成以及星团环境中的恒星形成。  相似文献   

2.
The initial condition of the formation of massive stars is still unclear at present. In particular, it is still debatable whether or not massive stars are formed in the cluster center. Some people considered from the viewpoint of time scale and thought that the mass segregation phenomena in embedded clusters means that the massive stars can only be born in the cluster center. In this paper we used the Monte Carlo method to make numerical simulation of the dynamical evolution of embedded clusters and the result is compared with the observations. It is assumed that at the initial time massive stars are randomly distributed. It was found that, due to the random motions of massive stars, temporary mass segregation may exist at certain times in the course of evolution of a given embedded cluster, and this phenomenon may be very prominent in some of them. It is pointed out that massive star formation in the center is not the only explanation for mass segregation in embedded clusters. In addition, dynamical friction from the gas can effectively reduce the time scale of the dynamical mass segregation. In consequence, the probability of temporary mass segregation is increased.  相似文献   

3.
大质量恒星演化研究   总被引:1,自引:0,他引:1  
由于高光度和高质量损失率等特性,大质量恒星在星系形成和演化等现代天体物理学的研究中扮演着重要的角色。自上世纪中叶以来,恒星物理研究揭示了大质量恒星内部结构和演化的主要特性,并且构造了一些大质量恒星的演化模型。然而,近年来对大质量恒星的观测表明,已有的这些理论演化模型与观测结果之间存在着严重的分歧。在主导大质量恒星演化最主要因素(即质量损失、内部对流等问题)的处理上,现有的理论有很大的缺陷。综述了目前对上述这些问题的研究现状,并探讨了今后的研究方向。  相似文献   

4.
The birth process and (early) evolution of massive stars is still poorly understood. Massive stars are rare, their birthplaces are hidden from view and their formation timescale is short. So far, our physical knowledge of these young massive stars has been derived from near‐IR imaging and spectroscopy, revealing populations of young OB‐type stars, some still surrounded by a (remnant?) accretion disk, others apparently “normal” main sequence stars powering H II regions. The most important spectral features of OB‐type stars are, however, located in the UV and optical range. With VLT/X‐shooter it is possible to extend the spectral coverage of these young massive stars into the optical range, to better determine their photospheric properties, to study the onset of the stellar wind, and to characterize the physical structure of the circumstellar disk (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
It is well known that galaxies accumulating large quantities of gas undergo violent bursts of star formation. This is believed to be due to tidal interactions of galaxies leading to the infall of gas into their central regions. Bursts of star formation in this scenario are transitory phenomena and can be induced only by external sources.However, in some cases there is no direct evidence of tidal interactions in starburst galaxies.We discuss another possibility of bursting phenomena in galaxies connected with nonlinear feedback processes in mass-exchange between components of star-forming region. We consider a three-component model including cold clouds, warm gas and massive stars and take into account the delay processes in the transformation of hot gas ejected by massive stars and evaporated from cold phase, into the warm phase. Self-regulating mechanism of phase transition of small clouds into warm gas due to heating radiation of massive stars is also taken into account.The analysis of stability of the system shows that it could be unstable even in case of a small efficiency in the birth of massive stars. The evolution of unstable nonlinear perturbations leads to the development of self-sustained nonlinear oscillations of star formation.  相似文献   

6.
大质量恒星由于其高光度、短寿命和质量损失 ,对星系的积分光谱能量分布和重元素增丰起主导作用 ,从而在研究星系的形成和演化上具有特殊的意义。特别是随着天文设备的长足进展 ,我们可以回溯宇宙演化的历史 ,得到形成初期时星系的观测性质。那时 ,大质量恒星主导星系的辐射性质 ,这更加突出了对大质量恒星进一步了解的迫切性。但是大质量恒星的演化性质相对中小质量恒星而言 ,有很多不确定性。本文通过对比现有恒星模型与实测结果 ,对现有大质量恒星演化理论中存在的几个与对流和质量损失相关的问题进行了评述 ,并对从理论上 ,特别是通过数字模拟方法对这些问题进行诊断提出了展望。  相似文献   

7.
UBVRI CCD photometry in a wide field around two young open clusters, NGC 663 and 654, has been carried out. Hα and polarimetric observations for the cluster NGC 654 have also been obtained. We use the photometric data to construct colour–colour and colour–magnitude diagrams, from which we can investigate the reddening, age, mass and evolutionary states of the stellar contents of the these clusters. The reddening across the cluster regions is found to be variable. There is evidence for anomalous reddening law in both clusters; however, more infrared and polarimetric data are needed to conclude about the reddening law. Both clusters are situated at about a distance of 2.4 kpc. Star formation in both clusters is found to be a continuous process. In the case of NGC 663, star formation seems to have taken place sequentially, in the sense that formation of low-mass stars precedes the formation of most massive stars. Whereas, in the case of NGC 654, formation of low-mass stars did not cease after the formation of most massive stars in the cluster.  相似文献   

8.
恒星作为宇宙的基础组成元素,其形成过程一直是天文学中的重要研究对象。人们已基本了解中小质量恒星(质量小于8M⊙)的形成和演化过程;受到数量少、嵌埋深、演化快和反馈剧烈等因素的影响,大质量恒星(质量大于8M⊙)的形成过程依然谜团重重。介绍了小质量恒星形成的基本理论,以及吸积盘、竞争吸积、并合三种主流的大质量恒星形成模型;回顾了以往使用红外或射电望远镜对大质量恒星形成区的观测和分析,以及现阶段使用多波段巡天观测手段对大质量恒星形成区的研究成果;着重介绍了目前公认的大质量恒星形成的示踪物——分子外向流的理论和观测现状,以及大质量外向流的优秀候选体——绿色延展天体的发现、理论及观测研究情况。最后,对大质量恒星形成的理论和观测研究进行了总结和展望。  相似文献   

9.
We present a model for the formation of massive ( M ≳10 M⊙) stars through accretion-induced collisions in the cores of embedded dense stellar clusters. This model circumvents the problem of accreting on to a star whose luminosity is sufficient to reverse the infall of gas. Instead, the central core of the cluster accretes from the surrounding gas, thereby decreasing its radius until collisions between individual components become sufficient. These components are, in general, intermediate-mass stars that have formed through accretion on to low-mass protostars. Once a sufficiently massive star has formed to expel the remaining gas, the cluster expands in accordance with this loss of mass, halting further collisions. This process implies a critical stellar density for the formation of massive stars, and a high rate of binaries formed by tidal capture.  相似文献   

10.
We investigate the evolutionary effect of dynamical mass segregation in young stellar clusters. Dynamical mass segregation acts on a time-scale of order the relaxation time of a cluster. Although some degree of mass segregation occurs earlier, the position of massive stars in rich young clusters generally reflects the cluster's initial conditions. In particular, the positions of the massive stars in the Trapezium cluster in Orion cannot be due to dynamical mass segregation, but indicate that they formed in, or near, the centre of the cluster. Implications of this for cluster formation and for the formation of high-mass stars are discussed.  相似文献   

11.
This paper reviews the current state of the problem of magnetism in massive Main Sequence stars. Chemically peculiar Bp stars with enhanced silicon lines and anomalous helium lines in their spectra are shown to be the most promising targets for the observational verification of various mechanisms of the formation and subsequent evolution of magnetic fields in CP stars. A catalog of magnetic Bp stars, containing 125 objects is prepared. Applying different criteria, we compiled a variety of magnetic star samples, which were then used to analyze magnetic fields in objects of different ages. The results of this analysis show that massive stars generally have stronger fields in all the samples studied, and thus confirm earlier results based on smaller star samples. No tight relation is observed and the parameters of individual objects show a very large scatter about the mean relation. The strongest and most complex fields are found in the youngest Bp stars with ages below 30 Myr. Magnetic Bp stars generally rotate slower than normal B-type stars, except for the hottest objects with enhanced helium lines, which have normal rotation velocities. No systematic differences are found between the angular rotation velocities of Bp stars with anomalous helium and silicon lines. We discuss various criteria, which can be used to observationally test the alternative mechanisms of formation and evolution of magnetic fields in CP stars and, in particular, to quantitatively compare not only the magnitudes, but also the topology of fields in objects of different ages.  相似文献   

12.
The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey “VISTA Variables in the Vía Lácteá (VVV)” discovered several new clusters hosting massive stars. We present an analysis of massive stars in four of these new clusters. Our aim is to provide constraints on stellar evolution and to better understand the relation between different types of massive stars. We use the radiative transfer code CMFGEN to analyse K-band spectra of twelve stars with spectral types ranging from O and B to WN and WC. We derive the stellar parameters of all targets as well as surface abundances for a subset of them. In the Hertzsprung–Russell diagram, the Wolf–Rayet stars are more luminous or hotter than the O stars. From the log(C/N)–log(C/He) diagram, we show quantitatively that WN stars are more chemically evolved than O stars, WC stars being more evolved than WN stars. Mass loss rates among Wolf–Rayet stars are a factor of 10 larger than for O stars, in agreement with previous findings.  相似文献   

13.
Astrochemistry is the discipline that studies physico-chemical processes in astrophysical environments. Such environments are characterized by conditions that are substantially different from those existing in usual chemical laboratories. Models which aim to explain the formation of molecular species in interstellar environments must take into account various factors, including many that are directly, or indirectly related to the populations of massive stars in galaxies. The aim of this paper is to review the influence of massive stars, whatever their evolution stage, on the physico-chemical processes at work in interstellar environments. These influences include the ultraviolet radiation field, the production of high energy particles, the synthesis of radionuclides and the formation of shocks that permeate the interstellar medium.  相似文献   

14.
I present a model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. We follow the evolution from redshift z = 4.85 until the present epoch. The energy release by massive stars and supernovae prevents a rapid collapse of the baryonic matter and delays the maximum star formation until redshift z ≈ 1. The galaxy forms radially from inside-out and vertically from top-to-bottom. The feedback of stars leads to turbulent motions and large-scale flows in the ISM. As one result the galactic disk is significantly enriched by chemical elements synthesized in bulge stars.  相似文献   

15.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

16.
Nearly all of the initial angular momentum of the matter that goes into each forming star must somehow be removed or redistributed during the formation process. The possible transport mechanisms and the possible fates of the excess angular momentum are discussed, and it is argued that transport processes in discs are probably not sufficient by themselves to solve the angular momentum problem, while tidal interactions with other stars in forming binary or multiple systems are likely to be of very general importance in redistributing angular momentum during the star formation process. Most, if not all, stars probably form in binary or multiple systems, and tidal torques in these systems can transfer much of the angular momentum from the gas around each forming star to the orbital motions of the companion stars. Tidally generated waves in circumstellar discs may contribute to the overall redistribution of angular momentum. Stars may gain much of their mass by tidally triggered bursts of rapid accretion, and these bursts could account for some of the most energetic phenomena of the earliest stages of stellar evolution, such as jet-like outflows. If tidal interactions are indeed of general importance, planet-forming discs may often have a more chaotic and violent early evolution than in standard models, and shock heating events may be common. Interactions in a hierarchy of subgroups may play a role in building up massive stars in clusters and in determining the form of the upper initial mass function (IMF) . Many of the processes discussed here have analogues on galactic scales, and there may be similarities between the formation of massive stars by interaction-driven accretion processes in clusters and the buildup of massive black holes in galactic nuclei.  相似文献   

17.
Methods for estimating the masses of neutron stars in the Vela X-1, 4U 1700-37, and J0751+1807 are analyzed. The possible existence of massive neutron stars, the fraction of such stars among the overall total of neutron stars, and possible channels for their formation are discussed.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 211–222 (May 2005).  相似文献   

18.
This paper introduces a technique for searching for bright massive stars in galaxies beyond the Local Group.To search for massive stars,we processed the results of stellar photometry from the Hubble Space Telescope(HST) images using the DAOPHOT and DOLPHOT packages.The results of such searches are demonstrated with examples of the galaxies DDO 68,M94 and NGC 1672.In the galaxy DDO 68,the LBV star changes its brightness,and massive stars in M94 can be identified by excess in the Ha band.For the galaxy NGC 1672,we measure the distance for the first time by the TRGB method,which enabled determining the luminosities of the brightest stars,likely hypergiants,in the young star formation region.So far,we have performed stellar photometry on HST images of 320 northern sky galaxies located at a distance less than 12 Mpc.This allowed us to identify 53 galaxies with probable hypergiants.Further photometric and spectral observations of these galaxies are planned to search for massive stars.  相似文献   

19.
Star formation     
Various topics on star formation, centered on the observed properties of young stars and their environment, are reviewed. (a) In our Galaxy, young stellar objects are generally associated with giant molecular clouds. (b) Giant molecular clouds cannot be in free-fall collapse. They are probably stabilized by magnetic fields, which are then likely to dominate the dynamical evolution of the clouds themselves. (c) Star formation occurs mostly in spiral arms. The role of spiral density waves is however not yet clearly understood. (d) The formation of massive stars can perturb the evolution of the progenitor cloud, and possibly trigger the sequential formation of OB subgroups. (e) There is a large number of clouds in the Galaxy associated only with low and intermediate mass young stars. These clouds are not perturbed by the presence of massive stars, and are probably the best source of information on the primary triggering mechanism, active on a galactic scale, and on the initial conditions for star formation.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

20.
It is expected that an average protostar will undergo at least one impulsive interaction with a neighbouring protostar whilst a large fraction of its mass is still in a massive, extended disc. If protostars are formed individually within a cluster before falling together and interacting, there should be no preferred orientation for such interactions. As star formation within clusters is believed to be coeval, it is probable that, during interactions, both protostars possess massive, extended discs.   We have used an SPH code to carry out a series of simulations of non-coplanar disc–disc interactions. We find that non-coplanar interactions trigger gravitational instabilities in the discs, which may then fragment to form new companions to the existing stars. (This is different from coplanar interactions, in which most of the new companion stars form after material in the discs has been swept up into a shock layer, and this then fragments.) The original stars may also capture each other, leading to the formation of a small- N cluster. If every star undergoes a randomly oriented disc–disc interaction, then the outcome will be the birth of many new stars and substellar objects. Approximately two-thirds of the stars will end up in multiple systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号