首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The energy input into the interstellar medium in UltraluminousInfrared Galaxies (ULIRGs) is enormous, regardless of the nature ofthe power source. I discuss some of the major consequences for thestructure and energetics of the ISM in these galaxies. Observationally, the column densities in the nuclear regions of ULIRGsare known to be very high, which makes distinguishing starbursts fromAGN quite difficult. The level of energy and momentum injection meansthat the pressure in the ISM must be extremely high, at least 3-4orders of magnitude larger than in the local ISM or typical giantmolecular clouds. It also means that the luminosity of GMCs in ULIRGsmust be very high, as they must radiate many times their bindingenergy over their lifetimes. I briefly review the influence whichX-ray irradiation can have on the ISM in AGN-powered ULIRGs. Finally,I show that the presence of PAH features in ULIRGs does not imply thatthey must be starburst-dominated, since at the column densities andpressures typical of the ISM in ULIRGs PAHs can survive even at tensof parsec distances from the AGN.  相似文献   

2.
Radio observations shows that young supernova remnants such as Tycho and Cas A generally exhibit a circular clumpy shell. This shell shows a radial magnetic field whose equipartition strength is 2 to 3 orders of magnitude higher than the interstellar field. A simple compression of the ambient field by the shock can explain neither of these observations. We show that the Rayleigh-Taylor instability which occurs at the ejecta/ISM interface can explain these observations. We have done MHD simulations of the instability in the shell of Type-I supernova remnants for the first time by utilizing moving grid technique. Our simulation shows that Rayleigh-Taylor and Kelvin-Helmholtz instabilities amplify ambient magnetic fields locally and produce the clumpy radio shell. Strong magnetic field lines draped around the Rayleigh-Taylor fingers produce the radial B-vector polarization, whereas thermal bremsstrahlung from the dense fingers themselves produce the clumpy X-ray emission.  相似文献   

3.
The redshifted spectral line radiation emitted from both atomic fine-structure and molecular rotational transitions in the interstellar medium (ISM) of high-redshift galaxies can be detected in the centimetre, millimetre and submillimetre wavebands. Here we predict the counts of galaxies detectable in an array of molecular and atomic lines. This calculation requires a reasonable knowledge of both the surface density of these galaxies on the sky, and the physical conditions in their ISM. The surface density is constrained using the results of submillimetre-wave continuum surveys. Follow-up OVRO Millimeter Array observations of two of the galaxies detected in the dust continuum have provided direct measurements of CO rotational line emission at redshifts of 2.56 and 2.81. Based on these direct high-redshift observations and on models of the ISM that are constrained by observations of low-redshift ultraluminous infrared galaxies, we predict the surface density of line-emitting galaxies as a function of line flux density and observing frequency. We incorporate the sensitivities and mapping speeds of existing and future millimetre/submillimetre-wave telescopes and spectrographs, and so assess the prospects for blank-field surveys to detect this line emission from gas-rich high-redshift galaxies.  相似文献   

4.
The presence of gaseous halos in star forming disk galaxies is reviewed inthe context of a proposed disk-halo connection of the interstellar medium (ISM). Results from a new survey for H+ halos of edge-on galaxies are presented. The data confirm that thepresence of diffuse ionized gas (DIG) in the disk-halo interface of spiral galaxies is related to star formationprocesses in the underlying disk. A discussion allows us to establish a minimum energy release per unit area that is required to start the disk-halo mass exchange. By comparing some recent observational results for diagnostic emission lines with model predictions from photoionization we demonstratethat the origin and excitation of the ionized halo gas is still not completely understood and that a discussion gives important constraints formodels of the ISM. In comparison with similar findings for the Milky Way the need for an additional heating source is established. Special emphasis is given to some recent developments. In particular, newkinematical information for the DIG layer in NGC 5775 from ESO/VLT long-slitspectra is discussed in connection with the magnetic field structure in the halo of this object as deduced from VLA radio-continuum polarization data (Tüllmann et al., 2001). Finally, the rôle ofdust for the physical processes in the disk-halo interface is briefly addressed.  相似文献   

5.
Two fundamental constraints on the earliest star formation conditions in the Galaxy are an apparent empirical low-metallicity threshold of-4 ? [Fe/H], an and upper limit to the fraction of Population III halo stars of F III < 4 × 10-4. How do these observed constraints compare with predictions of simple models? This is investigated within the framework of element dispersal from clustered core-collapse SNe. Simple arguments considering turbulent mixing within multi-phase ISM suggest that the observed low-metallicity threshold is consistent with rough expected values. However, the observed limit on F III is two orders of magnitude larger than predictions from this simple, one-zone inhomogeneous chemical evolution.  相似文献   

6.
The intensities of carbon radio recombination lines (RRL’s) are definedallowing for the effect of dielectronic-like recombination. The rate ofdielectronic-like recombination is calculated as functions of line number,electron density and temperature accurate to 0.05. Following from the balanceequation solutions for populations, the RRL intensities are analytically foundby the method of successive approximations to an accuracy of 0.15. Theobservations of carbon RRL’s are analyzed toward Cassiopeia A. The averageelectron temperature, density, expanded CII region lengths and inaccuraciesare found with the experimental values of RRL widths and intensities.  相似文献   

7.
The hot interstellar medium (ISM) has far-reaching effect upon thestructure of galaxies. Although ISM heating processes are fairly wellunderstood, after decades of study, the processes that cool the hotinterstellar medium remain obscure. The EURD spectrograph was designed tomeasure the diffuse cosmic background from 350 to 1100 Å in order tostudy the hot ISM and the mechanisms by which it sheds its energy. Wepresent the first analysis of EURD observations of the cosmic background.These EURD observations have proven to be far more sensitive than previouswork; compared to previous results, we have improved the limits to theintensity of 450 to 900 Å line emission from the ISM by one to twoorders of magnitude. Our limit to OVI 1032 Å / 1038 Å doublet of 7900ph s-1 cm-2 str-1 is the lowest yet reported. The EURDlimits to line emission are less intense than predicted by a varietytheoretical models of the local ISM.  相似文献   

8.
In studies of the environment of massive young stellar objects, recent progress in both observations and theory allows a unified treatment of data for maser and quasi-thermal lines. Interferometric maser images provide information on the distribution and kinematics of masing gas on small spatial scales. Observations of multiple masing transitions provide constraints on the physical parameters.Interferometric data on quasi-thermal molecular lines permits an investigation of the overall distribution and kinematics of the molecular gas in the vicinity of young stellar objects, including those which are deeply embedded. Using multiple transitions of different molecules, one can obtain good constraints on the physical and chemical parameters. Combining these data enables the construction of unified models, which take into account spatial scales differing by orders of magnitude.Here, we present such a combined analysis of the environment around the ultracompact HII region in W3(OH). This includes the structure of the methanol masing region, physical structure of the near vicinity of W3(OH), detection of new masers in the large-scale shock front and embedded sources in the vicinity of the TW young stellar object.  相似文献   

9.
During the past decade or so, measurements of Galactic H  i absorption using VLBI against extragalactic sources, as well as multi-epoch observations in pulsar directions, have detected small-scale transverse variations corresponding to tens of au at the distance of the absorbing matter. Hitherto these measurements have been interpreted as small-scale structure in the H  i distribution with densities n H  i ∼104–105 cm−3, orders of magnitude greater than those of the pc-scale structure. Naturally, it is difficult to imagine how such structures could exist in equilibrium with other components of the ISM.
In this paper we show that structure on all scales contributes to the differences on neighbouring lines of sight, and that the observed differences can be accounted for by a natural extension of the distribution of irregularities in the distribution of H  i opacities at larger scales, using a single power law. This, in our opinion, should put an end to the decades-long puzzle of the so-called small-scale structure in H  i and other species in the Galaxy.  相似文献   

10.
Molecular clouds (MC) are the densest and coldestcomponent of the interstellar gas, and the sites of starformation. They are also turbulent and fractaland theirmasses and sizes span several orders of magnitude. It is also generally believed that they are close to Virial equilibrium (VE).Since this statement has beenquestioned by a number of authors, with important implicationson molecular clouds’ lifetimes, we will review this subjectwithin the context of a turbulent ISM. In this framework, there issignificant numerical evidence that MCs are not in VE, that there is a strong exchange of mass, momentum and energy between clouds and their surrounding medium, andthat it is difficult (if not impossible) to form quasistatic coresinside MCs, suggesting that they must be transient, short-livedphenomena. Thus, their formation and disruption must be primarily dynamical, and probably not due tojust a single mechanism, but rather to the combination of severalprocesses. This picture seems consistent withrecent estimates of ages of stars in the solar neighborhood.  相似文献   

11.
The contraction of an interstellar cloud is followed. The results indicates that there are shock waves appear during contraction. In order to study the effect of shock waves, two models have been studied. The post-shock temperature for the two models are, respectively, 3006 K and 2984 K. The density increases by more than three orders of magnitude. The gas is generally cooled by atoms, molecules, and grains. The dominant cooling process changes according to the chemical composition and the temperature of the gas. The thermal equilibrium depends on the existing physical conditions.  相似文献   

12.
We have made the first interferomeric measurements of the wavelengths of the important ultraviolet diagnostic lines in the spectra C iv near 155 nm and Si iv near 139 nm with a vacuum ultraviolet Fourier transform spectrometer and high-current discharge sources. The wavelength uncertainties were reduced by 1 order of magnitude for the C iv lines and by 2 orders of magnitude for the Si iv lines. Our measurements also provide accurate wavelengths for resonance transitions in Al iii, Al ii, and Si ii.  相似文献   

13.
14.
The discontinuous behavior of coordinates of planets and the Moon and their derivatives, which are determined from their modern ephemerides, at the boundaries of adjacent interpolation intervals is illustrated using the example of the DE436 ephemerides. The numerical integration of the equations of motion of two asteroids demonstrates that the integration accuracy increases by several orders of magnitude if the step of numerical integration is matched to the boundaries of ephemeris interpolation intervals. In addition, an algorithm for ephemeris smoothing at the boundaries of interpolation intervals is developed and applied in order to eliminate the jumps of coordinates and their first-order derivatives emerging in extended- and quadprecision calculations. This algorithm allows one to remove the jumps of coordinates and their derivatives up to any given order. It is demonstrated that the use of ephemerides smoothed to the first-order derivatives in quad-precision calculations increases the accuracy of numerical integration by ~10 orders of magnitude.  相似文献   

15.
ISO spectra of the supernova remnant RCW103 are presented. This object is the prototype of a SNR shock heavily interacting with dense ISM (probably a molecular cloud). The spectra are dominated by prominent lines and show very little continuum at λ < 40 μm suggesting that the 12 and 25 μm IRAS emission from these types of remnant could be dominated by lines rather than continuum emission from warm dust heated by the shock as generally believed. The ISO data provide for the first time a simple and reliable estimate of the gas phase abundances of Si and Fe which are found to be close to solar relative to non refractory species such as Ne, S and Ar. This indicates that the shock is very effective in destroying the ISM dust and may therefore explain the absence of warm dust behind the shock. Like the optical Nickel lines, [NiII]6.63 μm yields Ni/Fe abundances a factor ≥ 10 above solar which we conclude results from a large underestimation of the computed Ni+ collision strengths. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
17.
Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium (ISM). However, observations indicate that this correlation is weaker than expected. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in other astrophysical problems to increase transport rates above the (very slow) diffusive values. Building on analytical studies, we test with numerical models whether turbulence can enhance the ambipolar diffusion rate sufficiently to explain the observed weak correlations. The numerical method is based on a gas-kinetic scheme with very low numerical diffusivity, thus allowing us to separate numerical and physical diffusion effects.  相似文献   

18.
Planetary systems are angular momentum reservoirs generated during star formation. Solutions to three of the most important problems in contemporary astrophysics are needed to understand the entire process of planetary system formation: The physics of the ISM. Stars form from dense molecular clouds that contain ∼ 30% of the total interstellar medium (ISM) mass. The structure, properties and lifetimes of molecular clouds are determined by the overall dynamics and evolution of a very complex system – the ISM. Understanding the physics of the ISM is of prime importance not only for Galactic but also for extragalactic and cosmological studies. Most of the ISM volume (∼ 65%) is filled with diffuse gas at temperatures between 3000 and 300 000 K, representing about 50% of the ISM mass. The physics of accretion and outflow. Powerful outflows are known to regulate angular momentum transport during star formation, the so-called accretion–outflow engine. Elementary physical considerations show that, to be efficient, the acceleration region for the outflows must be located close to the star (within 1 AU) where the gravitational field is strong. According to recent numerical simulations, this is also the region where terrestrial planets could form after 1 Myr. One should keep in mind that today the only evidence for life in the Universe comes from a planet located in this inner disk region (at 1 AU) from its parent star. The temperature of the accretion–outflow engine is between 3000 and 10 7 K. After 1 Myr, during the classical T Tauri stage, extinction is small and the engine becomes naked and can be observed at ultraviolet wavelengths. The physics of planet formation. Observations of volatiles released by dust, planetesimals and comets provide an extremely powerful tool for determining the relative abundances of the vaporizing species and for studying the photochemical and physical processes acting in the inner parts of young planetary systems. This region is illuminated by the strong UV radiation field produced by the star and the accretion–outflow engine. Absorption spectroscopy provides the most sensitive tool for determining the properties of the circumstellar gas as well as the characteristics of the atmospheres of the inner planets transiting the stellar disk. UV radiation also pumps the electronic transitions of the most abundant molecules (H 2, CO, etc.) that are observed in the UV.Here we argue that access to the UV spectral range is essential for making progress in this field, since the resonance lines of the most abundant atoms and ions at temperatures between 3000 and 300 000 K, together with the electronic transitions of the most abundant molecules (H 2, CO, OH, CS, S 2, CO 2 +, C 2, O 2, O3, etc.) are at UV wavelengths. A powerful UV-optical instrument would provide an efficient mean for measuring the abundance of ozone in the atmosphere of the thousands of transiting planets expected to be detected by the next space missions (GAIA, Corot, Kepler, etc.). Thus, a follow-up UV mission would be optimal for identifying Earth-like candidates.  相似文献   

19.
GRB 100219A at z = 4.667 has been the highest redshift gamma‐ray burst observed with the X‐shooter spectrograph up to now. The spectrum covering the range from 5000 to 24000 Å and a large number of absorption lines allows to make a detailed study of the interstellar medium in a high redshift galaxy. The ISM in the low ionisation state and the kinematics of the absorption line components reveal a complex velocity field. The metallicity measured from different absorption lines is around 0.1 solar. Other GRB hosts at redshift beyond ∼3 have similar metallicities albeit with a large scatter in the metallicity distribution. X‐shooter will allow us to determine metallicities of a larger number of GRB hosts beyond redshift 5, to probe the early chemical enrichment of the Universe and to study its evolution from redshift 2 to beyond 10 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The RHESSI Spectrometer   总被引:2,自引:0,他引:2  
Smith  D.M.  Lin  R.P.  Turin  P.  Curtis  D.W.  Primbsch  J.H.  Campbell  R.D.  Abiad  R.  Schroeder  P.  Cork  C.P.  Hull  E.L.  Landis  D.A.  Madden  N.W.  Malone  D.  Pehl  R.H.  Raudorf  T.  Sangsingkeow  P.  Boyle  R.  Banks  I.S.  Shirey  K.  Schwartz  Richard 《Solar physics》2002,210(1-2):33-60
RHESSI observes solar photons over three orders of magnitude in energy (3 keV to 17 MeV) with a single instrument: a set of nine cryogenically cooled coaxial germanium detectors. With their extremely high energy resolution, RHESSI can resolve the line shape of every known solar gamma-ray line except the neutron capture line at 2.223 MeV. High resolution also allows clean separation of thermal and non-thermal hard X-rays and the accurate measurement of even extremely steep power-law spectra. Detector segmentation, fast signal processing, and two sets of movable attenuators allow RHESSI to make high-quality spectra and images of flares across seven orders of magnitude in intensity. Here we describe the configuration and operation of the RHESSI spectrometer, show early results on in-flight performance, and discuss the principles of spectroscopic data analysis used by the RHESSI software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号