首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
More than 200 analyses of the sulfur isotopic composition of sulfides from various terrigenous and intrusive host rocks, metasomatically altered wall rocks, and gold lodes of the Upper Kolyma region are presented. In accessory pyrite of the metaterrigenous rocks, δ34S varies from ?23.1 to +5.7‰ δ34S of pyrite and arsenopyrite from gold-quartz mineralization is within the range ?10.6 to ?0.4‰ and is close to the average δ34S of pyrite from the metaterrigenous rocks (?4.4‰). In the intrusive rocks, δ34S of pyrite varies from ?3.8 to +2.6‰ (+0.7‰, on average) and drastically differs from δ34S of arsenopyrite from postmagmatic gold-rare-metal mineralization (?7.9 to ?2.7‰; ?5.2‰, on average). The comparison of the δ34S of accessory sulfides from the host rocks with δ34S of sulfides from the gold deposits suggests that sulfur mobilized from the terrigenous sequences participated in the hydrothermal process. The results obtained are consistent with the metamorphic model of the formation of gold-quartz deposits in the Upper Kolyma region.  相似文献   

2.
The Ohori ore deposit is one of the Cu–Pb–Zn deposits in the Green Tuff region, NE Japan, and consists of skarn‐type (Kaninomata) and vein‐type (Nakanomata) orebodies. The former has a unique origin because its original calcareous rocks were made by hydrothermal precipitation during Miocene submarine volcanism. Carbon and oxygen isotope ratios of skarn calcite and sulfur isotope ratios of sulfides were measured in and around the deposit. Carbon and oxygen isotope ratios of the skarn calcite are δ13C = ?15.51 to ?5.1‰, δ18O = +3.6 to +22.5‰. δ13C values are slightly lower than those of the Cretaceous skarn deposits in Japan. These isotope ratios of the Kaninomata skarn show that the original calcareous rocks resemble the present submarine hydrothermal carbonates at the CLAM Site, Okinawa Trough, than Cenozoic limestones, even though some isotopic shifts had occurred during later skarnization. δ34S ratios of the sulfide minerals from the Kaninomata and Nakanomata orebodies are mostly in a narrow range of +4.0 to +7.0‰ and they resemble each other, suggesting the same sulfur origin for the both deposits. The magnetite‐series Tertiary Kaninomatasawa granite is distributed just beneath the skarn layer and has δ34S ratios of +7.5 to 8.1‰. The heavy sulfur isotope ratio of the skarn sulfides may have been affected by the Kaninomatasawa granite.  相似文献   

3.

The stable enrichment of pyrite from magnesite ores in δ34S isotope (from 5.4 to 6.9‰) compared with pyrite from the host (sedimentary and igneous) rocks was established in the classical Satka sparry magnesite ore field. Concretionary segregations of fine-grained pyrite in dolomite are depleted in the heavy sulfur isotope (δ34S, from–9.1 to–5.8‰). Pyrite from dolerite is characterized by δ34S values (–1.1 and 1.7‰) close to the meteorite sulfur. The δ34S values in barite from the underlying dolomite horizon vary in the range of 32.3–41.4‰. The high degree of homogeneity of the sulfur isotope composition in pyrite from magnesite is a result of thermochemical sulfate reduction during the syngenetic crystallization of pyrite and magnesite from epigenetic brines, formed during dissolution of evaporite sulfate minerals at the stage of early catagenesis of the Riphean deposits.

  相似文献   

4.
城门山及武山铜矿床的硫同位素研究   总被引:1,自引:0,他引:1  
地质概况江西城门山矿床和武山矿床是长江中下游铁铜成矿带大冶-九江成矿亚带东南部位的两个与斑岩有成因关系的铜矿床。在地质构造上,前者处于九江-瑞昌东西向拗陷带中的长山-城门湖背斜倾伏端的北翼,后者处在横立山-黄桥向斜东端的北翼。两矿区的地层分布相似,主要是志留系至三叠系地层。其中,泥盆系上统五通组砂岩及石炭系中统黄龙组灰岩与矿床关系密切。  相似文献   

5.
The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry.Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between ?29.8 and + 10.2‰ and Δ33S values between + 0.015 and + 0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCRS with less negative values between ?11.3 and ?1.8‰. The sulfur isotope signatures are interpreted to reflect a mixture between hydrothermal and biogenic sulfide, with a more substantial biogenic contribution at Panarea.Multiple sulfur isotope measurements were performed on sulfides and elemental sulfur from drill core material from the Palinuro massive sulfide complex. δ34S and Δ33S values for pyrite between ?32.8 and ?1.1‰ and between ?0.012 to + 0.042‰, respectively, as well as for elemental sulfur with δ34S and Δ33S values between ?26.7 and ?2.1‰ and between + 0.035 and + 0.109‰, respectively, point to a microbial origin for much of the sulfide and elemental sulfur studied. Moreover, data suggest a coupling of bacterial sulfate reduction, sulfide oxidation and sulfur disproportionation. In addition, δ34S values for barite between + 25.0 and + 63.6‰ are also in agreement with high microbial turnover of sulfate at Palinuro.Although a magmatic SO2 contribution towards the formation of the Palinuro massive sulfide complex is very likely, the activity of different sulfur utilizing microorganisms played a fundamental role during its formation. Thus, porewater and multiple sulfur isotope data reveal differences in the hydrothermal activity at Palinuro and Panarea drill sites and underline the importance of microbial communities for the origin of massive sulfide mineralizations in the hydrothermal subsurface.  相似文献   

6.
《Resource Geology》2018,68(3):303-325
The Lujing uranium deposit, located in the southeastern part of the Nanling metallogenic province, is one of the representative granite‐related hydrothermal uranium deposits in South China. Basic geology, geochemistry, and geochronology of the deposit have been extensively studied. However, there is still a chronic lack of systematic research on the genesis and metallogenic process of the deposit. Thus, we recently carried out an electron microprobe and stable isotopic analysis. The main research results and progresses are as follows: Uranium minerals in this deposit include coffinite, pitchblende, and uranothorite, and small amounts of uranium exist in accessory minerals in the form of isomorphism. Coffinite, which occurs predominantly as the pseudomorphs after pitchblende, also occurs as a primary mineral and is locally formed from the remobilization of uranium from adjacent uranium‐bearing minerals. The mineralizing fluid was originally composed of a magmatic fluid generated by late Yanshanian magmatism. The high As content of pyrite in ores may reflect the addition of meteoric water, or the formation water (or both), to the magmatic hydrothermal system. The δ34S values vary from −14.4‰ to 13.9‰ (mean δ34S = −3.9‰), showing a range that is similar to nearby Cambrian metamorphic strata and Indosinian granites, indicating that these host rocks represent the source of sulfur; however, the possibility of a mantle source cannot be completely ruled out. According to our new isotopic data and recent Pb isotopic data, we conclude that the uranium in ores was derived by leaching dominantly from the uranium‐rich host rocks, especially the Cambrian metamorphic strata. The δ13CPDB values (−8.75‰ to 1.40‰; mean δ13CPDB = −5.41‰) and δ18OSMOW values (5.45–18.62‰; mean δ18O = 13.02‰) of reddish calcite from the ore‐forming stage suggest that the CO2 in the mineralizing fluids was derived predominantly from the mantle, with a small component contributed by marine carbonates. Based on these new data and previous research results, this paper proposes that uranium metallogenesis in the Lujing deposit is closely associated with mafic magmatism resulting from crustal extension during the Cretaceous to Paleogene in South China.  相似文献   

7.
The Huangshilao gold deposit (>13.5 t Au) is comprised of stratabound pyrite‐dominant massive sulfide ores, and is distinguished from the skarn Cu, Au, and Cu–Au deposits that are dominant in the Tongguanshan orefield, Tongling, east‐central China. The stratabound orebodies are situated along flexural slip faults along the unconformity between the Upper Devonian Wutong and the Upper Carboniferous Huanglong Formations. The ores, dominated by crystallized pyrite, colloform pyrite, and pyrrhotite, are systematically sampled from the underground stopes along strike drifts. The δ34S values of ore sulfides yield a wide variation from ?11.3 to 11.4‰, but mostly within 4–8‰, corresponding to the δ34S range (3.4–8.7‰) of the Yanshanian Tongguanshan and Tianshan quartz diorite intrusions in the Tongguanshan orefield, suggesting a magmatic dominated sulfur source. Few obvious negative δ34S values are induced by an involvement of sedimentation‐related biogenic sulfur. The wide δ34S variation denotes an incongruent physical and chemical interaction of the two sources. Combined analysis of gold contents and sulfur isotopes of the sulfides show that the magmatic hydrothermal solution provides primary metals despite a small quantity that may have been contributed by the sedimentary pyrites. The hydrothermal alteration, thermal metamorphism, trace element concentration in pyrites, and existing aeromagnetic data jointly suggest that the hydrothermal fluid migrated vertically from an intrusion below, along the flexural slip faults, but not laterally from the nearby outcrop of Tianshan stock.  相似文献   

8.
Abstract: Sulfides from the Daebo Jurassic granitoids and some ore deposits from Korean Peninsula and Sikhote Alin occurring in different basement settings were analyzed for δ34S values. Highly positive values were obtained from Jurassic Mo skarn deposit at Geumseong of the Ogcheon belt (average +13. 0%), Au‐quartz vein deposits at Unsan, North Korea (+6. 7%), and late Paleozoic Sn‐F deposit at Votnesenka (+8. 2%), Khanka massif, Russia. Together with published data of that region, regional variation of δ34S values is shown across Korean Peninsula. Sulfur isotopic data published are compiled on 88 ore deposits, whose mineralization epochs belong to Cretaceous (58 deposits), Jurassic (25 deposits) and Precambrian (4 deposits) in South Korea. Average sulfur isotopic values vary across South Korea as follows: Cretaceous deposits in the Gyeongsang basin, +4. 8% ranging +1.2 ? +12.7‰ (n=28); Jurassic and Cretaceous deposits in the Sobaegsan massif, +3. 5% ranging 0.0 ? +7.8‰ (n=20); those of the Ogcheon belt, +6. 4% ranging ‐0.5 ? +15.4‰(n=19); those of the Gyeonggi massif, +5. 5% ranging +2.1 ? +9.0‰(n = 21). The δ34S values of South Korea tend to be concentrated around +5. 5 permil, exhibiting little, if any, a systematic variation across the geotectonic belts. This tendency is seen also in North Korea and Northeast China within the Cino‐Korean Block, and may be called as Cino‐Korean type. Sulfur of this type is derived mostly from the crystalline basement. Khanka massif of Russia seems to have features of the Cino‐Korean type. In contrast, paired positive/negative belts corresponding to magnetite‐series/ilmenite‐series granitic belts are overwhelming in the Japanese Islands, especially in Southwest Japan. The similar trend is also seen in southern Sikhote Alin and northern Okhotsk Rim, which may be called as Japanese type. Source of the sulfur in this type is likely in the subducting oceanic slab for positive value and accreted sedimentary complex for the negative value, respectively. The Daebo granitoids have an average rock δ34S value of +5. 3 permil, which should have reflected that of the source rocks in the continental crust. The ore sulfur heavier than this value may have been originated in other granitoids having even higher δ34S values, or the ore fluids interacted directly with sulfate sulfur of the host evaporites or carbonate rocks. Rock isotopic values of granitoids and basement rocks need to be examined in future from the above point of view in mind.  相似文献   

9.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

10.
The evolution of the global sulfur isotope curve was plotted based on the δ34S values of evaporates resultant from oceanic evaporation. In the long period of geological history the δ34S values showed obvious peaks for three times during the process of ancient oceans’ sulfur isotope evolution, namely the Early Cambrian (+30‰), the Late Devonian (+25‰) and the Permian-Triassic transition interval (+17‰), but the causes of the abnormal rise of sulfur isotopic values during the geological period are still in question. In this paper, 18 samples collected from a large Devonian barite deposit from Zhenning County were analyzed to determine their δ34S values, revealing that the 18 samples have very high δ34S values (δ34S=41.88‰-+68.39‰), with an average close to 56.30‰, which are higher than the isotopic values of contemporary sulfates (+17‰- +25‰). A comparative analysis was conducted of the emerging of high δ34S barite deposits (from Cambrian and Devonian) and the δ34S variation curves of the ancient oceans. The results indicate that the time when the obvious peaks of δ34S values appeared and the time of massive sedimentation of high δ34S barite deposits are very close to each other, which, in our opinion, is not a coincidence. There may exist some correlations between the sulfur isotope evolution of ancient oceans during the diverse periods of geological history and the massive sedimentation of high δ34S barite deposits. Therefore, it is inferred that perhaps it was the massive sedimentation of high δ34S barites that caused the sharp rise of δ34S values in a short period of time.  相似文献   

11.
Messinian gypsum deposits from Dir El-Baraqan area, Northern Coast of Egypt, were investigated by stable sulfur isotope method, X-ray diffraction, infrared spectroscopy, optical microscopy, and scanning electron microscopy to differentiate features formed under substantial microbial influences as indicator of paleoenvironments. Petrographically, gypsum deposits were classified into three types: biolaminated gypsum, disordered selenite, and swallow-tail selenitic crystals. Biolaminated gypsum is characterized by regular alternating dark and light laminae, which were formed due to the seasonal environmental changes in Dir El-Baraqan area. Stable sulfur isotope data show that the gypsum deposits are characterized by δ34S values ranging from +18.1 to +28.1 ‰. In swallow-tail gypsum, the δ34S values are characterized by a narrow range (from +20.0 to +20.2 ‰) which is considered as the primary phase. In biolaminated gypsum, the δ34S values ranged from +22.8 to +28.1 ‰ which is considered as the secondary phase. However, the white laminae are characterized by δ34S values ranging from +22.8 to +24.1 ‰, while dark laminae are characterized by δ34S values ranging from +27.2 to +28.1 ‰. The high δ34S values of dark laminae revealed the increasing activity of sulfate-reducing bacteria.  相似文献   

12.
Chilean manto-type (CMT) Cu(–Ag) hydrothermal deposits share a characteristic association of volcano-sedimentary Jurassic to Lower Cretaceous host rocks, style of mineralization, ore and associated mineralogy and geochemistry, with ore grades typically > 1%Cu, that make this family of deposits significant and interesting, both academically and economically. Although often stratabound, geological evidence supports an epigenetic origin for these deposits. We present a detailed stable isotope study of La Serena and Melipilla–Naltahua Lower Cretaceous deposits, central Chile, which reveals extremely negative δ34S values, to − 50‰, which are among the lowest values found in any ore deposit. In addition, the range of δ34S values from sulfides in the two areas is very wide: − 38.3 to − 6.9‰ in La Serena, and − 50.4 to − 0.6‰ in Melipilla–Naltahua. These new data significantly extended the reported range of δ34S data for CMT deposits. Co-existing sulfates range from 7.9 to 14.3‰, and are exclusive to La Serena deposit. The wide sulfide isotopic range occurs at deposit and hand specimen scale, and suggests a polygenic sulfur source for these deposits, where bacteriogenic sulfide dominates. While sulfur isotope data for the bulk of Jurassic CMT deposits, northern Chile, suggests a predominant magmatic source in their origin (mean =  2.7 ± 1.9‰, 1σ), contributions of a magmatic component is only likely to be involved at Melipilla–Naltahua deposit.The δ13C values obtained for calcites associated with the mineralization range from − 20.1 to 0.2‰ also suggesting polygenic carbon sources, with the likely strong involvement of degradation of organic matter and leaching of limestone.Two different genetic models, with involvement of hydrocarbon, are proposed for both areas. For Melipilla–Naltahua, a two-step model can be developed as follows: 1) Framboidal pyrite growth, with very low δ34S, formed by bacterial sulfate reduction in an open system, and with diagenetic degradation of oil-related brines, leaving pyrobitumen. 2) Cu-bearing stage, replacing of framboidal pyrite, inheriting depleted sulfur as low as − 50.4‰, together with sulfides directly precipitated from a hydrothermal fluid with δ34S close to 0‰. For La Serena, a single step model fits best, without framboidal pyrite generation. Cu-bearing sulfides were precipitated mainly in veins where Cu plus base metal-bearing hydrothermal fluids mixed with H2S generated by bacterial sulfate reduction in the host rocks. Isotopic evidence clearly illustrates that bacterial activity, perhaps enhanced by hydrothermal activity, was fed by hydrocarbon brines and sulfate remobilized from continental evaporites. It is possible that variable ecological conditions led to different extents of isotopic fractionation, adding to the typical sulfur isotopic heterogeneity of such bacterial systems. For both areas, the Cu-bearing stage occurred during the peak to waning stages of the very low-grade metamorphism that affected the Lower Cretaceous sequence.  相似文献   

13.
In Kamchatka, Central Koryak, Central Kamchatka and East Kamchatka metallogenic belts are distributed from northwest to southeast. K–Ar age, sulfur isotopic composition of sulfide minerals, and bulk chemical compositions of ores were analyzed for 13 ore deposits including hydrothermal gold‐silver and base metal, in order to elucidate the geological time periods of ore formation, relationship to regional volcanic belts, type of mineralization, and origin of sulfur in sulfides. The dating yielded ore‐forming ages of 41 Ma for the Ametistovoe deposit in the Central Koryak, 17.1 Ma for the Zolotoe deposit and 6.9 Ma for the Aginskoe deposit in the Central Kamchatka, and 7.4 Ma for the Porozhistoe deposit and 5.1 Ma for the Vilyuchinskoe deposit in the East Kamchatka metallogenic belt. The data combined with previous data of ore‐forming ages indicate that the time periods of ore formation in these metallogenic belts become young towards the southeast. The averaged δ34SCDT of sulfides are ?2.8‰ for the Ametistovoe deposit in Central Koryak, ?1.8‰ to +2.0‰ (av. ?0.1‰) for the Zolotoe, Aginskoe, Baranievskoe and Ozernovskoe deposits in Central Kamchatka, and ?0.7 to +3.8‰ (av. +1.7‰) for Bolshe‐Bannoe, Kumroch, Vilyuchinskoe, Bystrinskoe, Asachinskoe, Rodnikovoe, and Mutnovskoe deposits in East Kamchatka. The negative δ34SCDT value from the Ametistovoe deposit in Central Koryak is ascribed to the contamination of 32S‐enriched sedimentary sulfur in the Ukelayat‐Lesnaya River trough of basement rock. Comparison of the sulfur isotope compositions of the mineral deposits shows similarity between the Central Koryak and Magadan metallogenic belts, and East Kamchatka and Kuril Islands belts. The Central Kamchatka belt is intermediate between these two groups in term of sulfur isotopic composition.  相似文献   

14.
The source of sulfur in giant Norilsk-type sulfide deposits is discussed. A review of the state of the problem and a critical analysis of existing hypotheses are made. The distribution of δ34S in sulfides of ore occurrences and small and large deposits and in normal sedimentary, metamorphogenic, and hypogene sulfates is considered. A large number of new δ34S data for sulfides and sulfates in various deposits, volcanic and terrigenous rocks, coals, graphites, and metasomatites are presented. The main attention is focused on the objects of the Norilsk and Kureika ore districts. The δ34S value varies from -14 to + 22.5‰ in sulfides of rocks and ores and from 15.3 to 33‰ in anhydrites. In sulfide-sulfate intergrowths and assemblages, δ34S is within 4.2-14.6‰ in sulfides and within 15.3-21.3‰ in anhydrites. The most isotopically heavy sulfur was found in pyrrhotite veins in basalts (δ34S = 21.6‰), in sulfate veins cutting dolomites (δ34S = 33‰), and in subsidence caldera sulfates in basalts (δ34S = 23.2-25.2‰). Sulfide ores of the Tsentral’naya Shilki intrusion have a heavy sulfur isotope composition (δ34S = + 17.7‰ (n = 15)). Thermobarogeochemical studies of anhydrites have revealed inclusions of different types with homogenization temperatures ranging from 685 °C to 80 °C. Metamorphogenic and hypogene anhydrites are associated with a carbonaceous substance, and hypogene anhydrites have inclusions of chloride-containing salt melts. We assume that sulfur in the trap sulfide deposits was introduced with sulfates of sedimentary rocks (δ34S = 22-24‰). No assimilation of sulfates by basaltic melt took place. The sedimentary anhydrites were “steamed” by hydrocarbons, which led to sulfate reduction and δ34S fractionation. As a result, isotopically light sulfur accumulated in sulfides and hydrogen sulfide, isotopically heavy sulfur was removed by aqueous calcium sulfate solution, and “residual” metamorphogenic anhydrite acquired a lighter sulfur isotope composition as compared with the sedimentary one. The wide variations in δ34S in sulfides and sulfates are due to changes in the physicochemical parameters of the ore-forming system (first of all, temperature and Pch4) during the sulfate reduction. The regional hydrocarbon resources were sufficient for large-scale ore formation.  相似文献   

15.
The Jiapigou gold belt (>150 t Au), one of the most important gold-producing districts in China, is located at the northeastern margin of the North China Craton. It is composed of 17 gold deposits with an average grade around 10 g/t Au. The deposits are hosted in Archean gneiss and TTG rocks, and are all in shear zones or fractures of varying orientations and magnitudes. The δ34S values of sulfide from ores are mainly between 2.7?‰ and 10?‰. The Pb isotope characteristics of ore sulfides are different from those of the Archean metamorphic rocks and Mesozoic granites and dikes, and indicate that they have different lead sources. The sulfur and lead isotope compositions imply that the ore-forming materials might originate from multiple, mainly deep sources. Fluid inclusions in pyrite have 3He/4He ratios of 0.6 to 2.5 Ra, whereas their 40Ar/36Ar ratios range from 1,444 to 9,805, indicating a dominantly mantle fluid with a negligible crustal component. δ18O values calculated from hydrothermal quartz are between ?0.2?‰ and +5.9?‰, and δD values of the fluids in the fluid inclusions in quartz are from ?70?‰ to ?96?‰. These ranges suggest dominantly magmatic water with a minor meteoric component. The noble gas isotopic data, along with the stable isotopic data, suggest that the ore-forming fluids have a dominantly mantle source with minor crustal addition.  相似文献   

16.
Abstract: Sulfur isotope data (δ34S) of sulfides of more than 6700 samples from 157 ore deposits associated with Early and Late Yanshanian granitic and volcanic activities in South China are reviewed and summarized. Averaged δ34S values of individual deposits vary from ‐9. 3 to +20. 6%, and show a normal distribution pattern with the average of +2%. About 88 % of the ore deposits have values within the range, ?2.5 ? +13.6‰, of associated Yanshanian granitoids. There is a temporal‐spatial variation of δ34S values of the ore deposits. However, no clear zonal distribution parallel to geotectonic NNE lineaments was observed. Spatial distribution of ore sulfide δ34S values in most of the NE part of the whole studied area coincides with that of Yanshanian granitoids and volcanic rocks. A downward tendency of the average values in time is: +3. 0% (n=7, J1) → +1. 6% (n=29, J2) → +1. 7% (n=68, J3) → +1. 8% (n=37, K1) → ?1. 5% (n=16, K2). There is an “island” of high and variable δ34S values (0? +16.5‰) occurring within a generally low trough zone (?8 ? 0%) of N‐S about 800 km and E‐W 100 to 300 km, bounded by 110°E ? 116°E longitudes and 22°N ? 31°N latitudes. The island occurs at the junction of three tectonic units and a NE‐trending crustal matching line implying a variety of magmatism occurred at the junction. The low trough zone coincides with a low ferric/ferrous ratio zone of Early Yanshanian granitoids, indicating their genetic relationship. Different genetic types of ore deposits show different histogram patterns suggesting different relationships to magmatic rocks and host strata. Granite/greisen/pegmatite type deposits are most closely associated with granitoids, with average ore sul‐fide δ34S values for individual ore deposits ranging between ‐2. 0 and +4. 1%, and an average of +0. 5% (n = 15) close to type meteoric value of 0%. Porphyry‐type deposits have also narrow range of ?2.2 ? + 4.9‰, with an average value of +1. 1% (n = 18). Skarn‐type dominated ore deposits have a nearly normal distribution pattern with an average of +1. 6% (n = 62), ranging from ‐5. 3 to +11. 5%. Volcano‐subvolcanic ore deposits range between ‐3. 1 and +5. 9% with an average of +2. 3% (n = 19). Other types of hydrothermal ore deposits have averaged δ34S values of individual ones from ‐9. 3 to +20. 6%, with average value of +1. 3% (n=43). Vertical and horizontal zonations of δ34S values of ore deposits around their associated granitoid plutons are observed in several localities. Such zonations may be caused by interaction between magma and/or magmatic fluids and host sedimentary rocks, as well as the evolution of physico‐chemical conditions of ore‐forming fluids. Spatial distribution of ore sulfur isotope compositions is also clearly controlled by tectonics and deep faults. Ore sulfur isotope composition is sometimes strongly affected by host sedimentary rocks, especially by evaporite sulfur with much higher δ34S value and partly by biogenic sulfur with low δ34S value. The δ34S values of Yanshanian granitoids are from ‐2. 5 to +13. 6% for both rock samples and pyrite/pyrrhotite separates from granitic rocks, with similar spatial distribution pattern to those of associated ore deposits. The ore deposits associated with ilmenite‐series granitoids have δ34S values ranging between ‐7. 5 and +10. 4% with an average of +1. 0%, while the ore deposits associated with magnetite‐series granitoids ranging between ?8.0 ? +11.5‰ with an average of +1. 1%. δ34S values of ore deposits tend to converge to +3% as the Fe2O3/FeO ratio of associated granitoids increases from 0. 45 to 8. 7.  相似文献   

17.
The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.  相似文献   

18.
The Bleiberg Pb-Zn deposit in the Drau Range is the type locality of Alpine-type carbonate-hosted Pb-Zn deposits. Its origin has been the subject of on-going controversy with two contrasting genetic models proposed: (1) the SEDEX model, with ore forming contemporaneously with sedimentation of the Triassic host rocks at about 220 Ma vs. (2) the epigenetic MVT model, with ores forming after host rock sedimentation at about 200 Ma or later. Both models assume that, on a deposit or even district scale, a fixed paragenetic sequence of ore minerals can be established. The results of our detailed petrographic, chemical and sulfur isotope study of two key ore-samples from two major ore horizons in the Wetterstein Formation at Bleiberg (EHK02 Erzkalk horizon and Blb17 Maxer Bänke horizon) demonstrate that there is no fixed paragenetic sequence of ore minerals. Small-scale non-systematic variations are recorded in textures, sphalerite chemistry and δ34S. In each sample, texturally different sphalerite types (colloform schalenblende, fine- and coarse-grained crystalline sphalerite) co-occur on a millimeter to centimeter scale. These sphalerites represent multiple mineralization stages/pulses since they differ in their trace element inventory and in their δ34S. Nonetheless, there is some correspondence of sphalerite micro-textures, sulfur isotope and chemical composition between the two samples, with microcrystalline colloform schalenblende being Fe-rich, having high Fe/Cd (15 and 9, respectively) and a light sulfur isotope composition (δ34S −26.0 to −16.2‰). Cadmium-rich and Fe-poor sphalerite in both samples has relatively heavier sulfur isotope composition: in sample EHK02 this sphalerite has Fe/Cd of ∼0.5 and δ34S from −6.6 to −4.6‰; in sample Blb17 Fe/Cd is ∼0.1 and δ34S ranges from −15.0 to −1.5‰. Barite, which is restricted to sample EHK02, has δ34S ≈ 17‰. The large variations in δ34S recorded on the mm to cm-scale is consistent with variable contributions of reduced sulfur from two different sulfur reservoirs. The dominant reservoir with δ34S values <−20‰ likely results from local bacteriogenic sulfate reduction (BSR), whereas the second reservoir, with δ34S about −5‰ suggests a hydrothermal source likely linked with thermochemical sulfate reduction (TSR). Based on this small- to micro-scale study, no simple, deposit-wide paragenetic and sulfur isotope evolution with time can be established. In the Erzkalk ore (sample EHK02) an earlier Pb-Zn-Ba stage, characterized by heavy sulfur isotope values, is succeeded by a light δ34S-dominated Zn-Pb-F stage. In contrast, the several mineralization pulses identified in the stratiform Zn-Pb-F Maxer Bänke ore (sample Blb17) define a broad trend to heavier sulfur isotope values with time. The interaction documented in these samples between two sulfur reservoirs is considered a key mechanism of ore formation.  相似文献   

19.
The Chahmir zinc–lead deposit (1.5 Mt @ 6 % Zn + 2 % Pb) in Central Iran is one among several sedimentary-exhalative Zn–Pb deposits in the Early Cambrian Zarigan–Chahmir basin (e.g., Koushk, Darreh-Dehu, and Zarigan). The deposit is hosted by carbonaceous, fine-grained black siltstones, and shales interlayered with volcaniclastic sandstone beds. It corresponds to the upper part of the Early Cambrian volcano-sedimentary sequence (ECVSS), which was deposited on the Posht-e-Badam Block during back-arc rifting of the continental margin of Central Iran. Based on crosscutting relationships, mineralogy, and texture of sulfide mineralization, four different facies can be distinguished: stockwork (feeder zone), massive ore, bedded ore, and distal facies (exhalites with barite). Silicification, carbonatization, sericitization, and chloritization are the main wall-rock alteration styles; alteration intensity increases toward the proximal feeder zone. Fluid inclusion microthermometry was carried out on quartz associated with sulfides of the massive ore. Homogenization temperatures are in the range of 170–226 °C, and salinity is around 9 wt% NaCl eq. The size distribution of pyrite framboids of the bedded ore facies suggests anoxic to locally suboxic event for the host basin. δ34S(V-CDT) values of pyrite, sphalerite, and galena range from +10.9 to +29.8?‰. The highest δ34S values correspond to the bedded ore (+28.6 to +29.8?‰), and the lowest to the massive ore (+10.9 to +14.7?‰) and the feeder zone (+11.3 and +12.1?‰). The overall range of δ34S is consistent with a sedimentary environment where sulfide sulfur was derived from two sources. One of them was corresponding to early ore-stage sulfides in bedded ore and distal facies, consistent with bacterial reduction from coeval seawater sulfate in a closed or semiclosed basin. However, the δ34S values of late ore-stage sulfides, observed mainly in massive ore, interpreted as a hydrothermal sulfur component, leached from the lower part of the ECVSS. Sulfur isotopes, along with the sedimentological, textural, mineralogical, fluid inclusion, and geochemical characteristics of the Chahmir deposit are in agreement with a vent-proximal (Selwyn type) SEDEX ore deposit model.  相似文献   

20.
Large rounded pyrite grains (>1 mm), commonly referred to as “buckshot” pyrite grains, are a characteristic feature of the auriferous conglomerates (reefs) in the Witwatersrand and Ventersdorp supergroups, Kaapvaal Craton, South Africa. Detailed petrographic analyses of the reefs indicated that the vast majority of the buckshot pyrite grains are of reworked sedimentary origin, i.e., that the pyrite grains originally formed in the sedimentary environment during sedimentation and diagenesis. Forty-one of these reworked sedimentary pyrite grains from the Main, Vaal, Basal, Kalkoenkrans, Beatrix, and Ventersdorp Contact reefs were analyzed for their multiple sulfur isotope compositions (δ34S, Δ33S, and Δ36S) to determine the source of the pyrite sulfur. In addition, five epigenetic pyrite samples (pyrite formed after sedimentation and lithification) from the Middelvlei and the Ventersdorp Contact reefs were measured for comparison. The δ34S, Δ33S, and Δ36S values of all 41 reworked sedimentary pyrite grains indicate clear signatures of mass-dependent and mass-independent fractionation and range from ?6.8 to +13.8?‰, ?1.7 to +1.7?‰, and ?3.9 to +0.9?‰, respectively. In contrast, the five epigenetic pyrite samples display a very limited range of δ34S, Δ33S, and Δ36S values (+0.7 to +4.0?‰, ?0.3 to +0.0?‰. and ?0.3 to +0.1?‰, respectively). Despite the clear signatures of mass-independent sulfur isotope fractionation, very few data points plot along the primary Archean photochemical array suggesting a weak photolytic control over the data set. Instead, other factors command a greater degree of influence such as pyrite paragenesis, the prevailing depositional environment, and non-photolytic sulfur sources. In relation to pyrite paragenesis, reworked syngenetic sedimentary pyrite grains (pyrite originally precipitated along the sediment-water interface) are characterized by negative δ34S and Δ33S values, suggesting open system conditions with respect to sulfate supply and the presence of microbial sulfate reducers. On the contrary, most reworked diagenetic sedimentary pyrite grains (pyrite originally precipitated below the sediment-water interface) show positive δ34S and negative Δ33S values, suggesting closed system conditions. Negligible Δ33S anomalies from epigenetic pyrite suggest that the sulfur was sourced from a mass-dependent or isotopically homogenous metamorphic/hydrothermal fluid. Contrasting sulfur isotope compositions were also observed from different depositional environments, namely fluvial conglomerates and marine-modified fluvial conglomerates. The bulk of the pyrite grains from fluvial conglomerates are characterized by a wide range of δ34S values (?6.2 to +4.8?‰) and small Δ33S values (±0.3?‰). This signature likely represents a crustal sulfate reservoir derived from either volcanic degassing or from weathering of sulfide minerals in the hinterland. Reworked sedimentary pyrite grains from marine-modified fluvial conglomerates share similar isotope compositions, but also produce a positive Δ33S/δ34S array that overlaps with the composition of Archean barite, suggesting the introduction of marine sulfur. These results demonstrate the presence of multiple sources of sulfur, which include atmospheric, crustal, and marine reservoirs. The prevalence of the mass-dependent crustal sulfur isotope signature in fluvial conglomerates suggests that sulfate concentrations were probably much higher in terrestrial settings in comparison to marine environments, which were sulfate-deficient. However, the optimum conditions for forming terrestrial sedimentary pyrite were probably not during fluvial progradation but rather during the early phases of flooding of low angle unconformities, i.e., during retrogradational fluvial deposition, coupled in some cases with marine transgressions, immediately following inflection points of maximum rate of relative sea level fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号