首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interrelations of the latitudinal distribution of the coronal green emission maxima, maximal numbers and areas of prominences, magnetic fields, sunspots, and polar faculae in the 20th and 21st sunspot cycles have been investigated. It is again demonstrated how the behaviour of all studied data depends on their heliographic latitude. In the polar zone, well separated from the equatorial we observe following polarity magnetic fields transported only polewards, while the equatorial zone is occupied mostly by leading polarity fields, developed there, moving equatorwards, and crossing the equator to the other hemisphere with the new cycle during the minimum of sunspot activity.This magnetic field distribution is well emphasized by the places of maximal occurrence of prominences and by the distribution of coronal green emission maxima which also differ in dependence on latitude.The question of identifying the first and last evolutionary stages of an extended cycle of activity is discussed and the existence of a magnetic activity cycle lasting 15–17 years is suggested.  相似文献   

2.
M. Waldmeier 《Solar physics》1981,70(2):251-258
The extension of the polar coronal holes has been studied for four cycles (1940–1978), using the observations of the corona line 530.3 nm. For about 7 years of each cycle, including sunspot minimum, the polar hole exists permanently and has a diameter of about 40° or even more. For about 3 years around sunspot maximum no polar hole does exist (Figure 5). The boundary of the hole is flanked at a distance of 10° by the polar zone of the corona and at one of 20° by that of the prominences. In the polar caps, so far they are occupied by the holes, polar photospheric faculae and the well-known plumes of the polar corona are found, and the polar crown of prominences, encircling the polar hole, is the belt where the reversal of the magnetic polarity takes place.  相似文献   

3.
A simple model is used to present a unified picture of the polarity pattern of the interplanetary magnetic field observed during the solar cycle. Emphasis in this paper is on the field near solar maximum. The heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field is explained in terms of weak poloidal (dipolar) field sources in the sun's photosphere. Unlike the Babcock theory, the author hypothesizes that the dipolar field exists at equatorial latitudes (0–20°), too, (as well as in polar regions) and that the major source of the interplanetary magnetic field observed near the ecliptic plane is the dipolar field from equatorial latitudes. The polarity of the interplanetary field data taken in 1968 and in the first half of 1969 near solar maximum may possibly be explained in terms of a depression of the dipolar field boundary in space. The effect on the solar wind of the greater activity in the northern hemisphere of the sun that existed in 1968 and in the first half of 1969 is believed responsible for this hypothesized depression, especially near solar maximum, of the plane separating the + and - dipolar polarity below the solar equatorial plane in space. Predictions are made concerning the interplanetary field to be observed near the ecliptic plane in each portion of the next solar cycle.  相似文献   

4.
M. Waldmeier 《Solar physics》1971,20(2):332-344
One of the most outstanding feature of solar activity in the decade 1959–1969 was a very strong asymmetry on the two hemispheres. On the northern hemisphere spots, faculae and prominences were more numerous and the white light corona was brighter than on the southern hemisphere. This happened as well in the main zone as in the polar zone. The green coronal line too was brighter on the northern hemisphere, but the intensity of the red line was asymmetric in the opposite sense. From this behaviour it follows that over the more active hemisphere the corona is denser and hotter. Between density N e and temperature T holds the relation: N e = 10–10 T 3. The real asymmetry was strengthened by a phase difference of the two hemispheres. This phase shift is subject to a long period that contains 8 eleven-year cycles. The intensity of the individual cycles follows the same long period. With low maxima of solar activity the northern hemisphere precedes, with high maxima the southern hemisphere (Figure 3).Astronomische Mitteilungen der Eidgenössischen Sternwarte Zürich, No. 302.  相似文献   

5.
Attention is drawn to the existence of errors in the original digital dataset containing sunspot data extracted from certain sections of the printed Greenwich Photo-heliographic Results (GPR) 1874?–?1976. Calculating the polar coordinates from the heliographic coordinates and comparing them with the recorded polar coordinates reveals that there are both isolated and systematic errors in the original sunspot digital dataset, particularly during the early years (1874?–?1914). It should be noted that most of these errors are present in the compiled sunspot digital dataset and not in the original printed copies of the Greenwich Photo-heliographic Results. Surprisingly, many of the errors in the digitised positions of sunspot groups are apparently in the measured polar coordinates, not the derived heliographic coordinates. The mathematical equations that are used to convert between heliographic and polar coordinate systems are formulated and then used to calculate revised (digitised) polar coordinates for sunspot groups, on the assumption that the heliographic coordinates of every sunspot group are correct. The additional complication of requiring accurate solar ephemerides in order to solve the mathematical equations is discussed in detail. It is shown that the isolated and systematic errors, which are prevalent in the sunspot digital dataset during the early years, disappear if revised polar coordinates are used instead. A comprehensive procedure for checking the original sunspot digital dataset is formulated in an Appendix.  相似文献   

6.
The fine structure of the quiescent prominence of 15 October 1969, observed at Abastumani Astrophysical Observatory of the Academy of Sciences of Georgia, U.S.S.R. with the horizontal telescope, is studied.The complex non-gaussian Ca+ K line profiles are decomposed into gaussian components and the distribution of the velocity field is plotted.Estimating the direction of the motion by the appearance of the spectral line and by the distribution of the velocity field, we conclude that there is a left-handed screw. Having used the high dispersion spectral data published, we find that prominences showing left-handed screws fall in the northern hemisphere of the Sun and those with right-handed screws in the southern hemisphere.The influence of Coriolis acceleration on quiescent prominences is discussed.  相似文献   

7.
The monthly sunspot numbers compiled by Temmer et al. and the monthly polar faculae from observations of the National Astronomical Observatory of Japan, for the interval of March 1954 to March 1996, are used to investigate the phase relationship between polar faculae and sunspot activity for total solar disk and for both hemispheres in solar cycles 19, 20, 21 and 22. We found that (1) the polar faculae begin earlier than sunspot activity, and the phase difference exhibits a consistent behaviour for different hemispheres in each of the solar cycles, implying that this phenomenon should not be regarded as a stochastic fluctuation; (2) the inverse correlation between polar faculae and sunspot numbers is not only a long-term behaviour, but also exists in short time range; (3) the polar faculae show leads of about 50–71 months relative to sunspot numbers, and the phase difference between them varies with solar cycle; (4) the phase difference value in the northern hemisphere differs from that in the southern hemisphere in a solar cycle, which means that phase difference also existed between the two hemispheres. Moreover, the phase difference between the two hemispheres exhibits a periodical behaviour. Our results seem to support the finding of Hiremath (2010).  相似文献   

8.
While at present we are able to deduce from ground records only qualitative properties of the solar wind, in the future quantitative deductions may be possible, in a statistical sense, from an examination of polar cap magnetograms together with records of geomagnetic activity. The qualitative inferences that are possible now indicate several important features of the behavior of the solar wind over the last 100 years. First, there appear to be significant long term changes in either the solar wind velocity, the magnetic field strength, the variability of the field or some combination of all three. Second, a heliographic latitude dependence of these parameters exists, whose amplitude depends on sunspot number. Third, with the exception of the most recent solar cycle, there is little north-south asymmetry in these solar parameters. Finally, there is a double sunspot cycle modulation of geomagnetic activity, the most likely cause of which is a modulation of the interplanetary magnetic polarity with latitude, and which in turn implies the presence of a solar polar magnetic dipole. The amplitude of this modulation has undergone significant changes since 1868, being large then and at the present, but effectively disappearing from 1908 to 1948.  相似文献   

9.
In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemispheres of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of the descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to the previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997–2000). The dominance of northern hemisphere shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.  相似文献   

10.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

11.
A. G. Tlatov 《Solar physics》2009,260(2):465-477
This paper considers the indices characterizing the minimum activity epoch, according to the data of large-scale magnetic fields and polar activity. Such indices include: dipole–octopole index, area and average latitude of the field with dominant polarity in each hemisphere, polar activity seen in polar faculae and Ca?ii K line bright points, coronal emission line intensity (5303?Å) and others. We studied the correlation between these indices and the amplitude of the following sunspot cycle, and the relation between the duration of the cycle of large-scale magnetic fields and the duration of the sunspot cycle. The obtained relationships allow us to presume that the polar field is formed from the sources of both preceding and the current activity cycles during the decay phase and at the activity minimum. The balance in these sources would therefore determine the features of the following sunspot cycle. The prediction for the 24th activity cycle using these results leads to W=102±13.  相似文献   

12.
The skewness of the monthly distribution of GSE latitudinal angles of Interplanetary Magnetic Field (IMF) observed near the Earth (Sk) is found to show anti-correlation with sunspot activity during the solar cycles 20–24. Sk can be considered as a measure of the predominant polarity of north-south component of IMF (Bz component) in the GSE system near 1 AU. Sk variations follow the magnitude of solar polar magnetic fields in general and polarity of south polar fields in particular during the years 1967–2020. Predominant polarity of Sk is found to be independent of the heliographic latitude of Earth. Sk basically reflects the variations of the solar dipolar magnetic field during a sunspot cycle. It is also found that IMF sector polarity variation is not a good indicator of the magnitude changes in solar polar magnetic fields during a sunspot cycle. This is possibly due to the influence of non-dipolar components of the solar magnetic field and the associated north-south asymmetries in the heliospheric current sheet.  相似文献   

13.
The sidereal rotation rate of the high-latitude solar regions is examined using long-lived photospheric polar faculae. The observations were carried out with the photoheliograph of Kislovodsk Mountain Station of the Pulkovo Observatory from 1982 to 1986. The following facts have been established: (a) There is a differential rotation of the polar faculae close to the maximum of solar activity, while the amount of latitude gradient of solar rotation decreases towards the sunspot minimum; (b) small differences of rotation in the northern and southern hemispheres of the Sun are observed; (c) some deviations of differential rotation curves constructed for each Carrington rotation from the mean curve of differential rotation are revealed. The total amplitude of the maximum positive and negative excesses is about 40–50 m s–1. The positive surplus velocities of solar rotation (the amplitude of which is about 20–25 m s–1) move in the form of a wave from heliographic latitudes 40° with a velocity of 1.6 m s–1. The latitude width of this flow is B 15°. This wave of abnormally high velocity starts in the year of minimum solar activity and reaches the pole 11 years later. The picture is symmetrical relative to the equator.  相似文献   

14.
We have extended our previous study of coronal holes, solar wind streams, and geomagnetic disturbances from the declining phase (1973–1975) of sunspot cycle 20 through sunspot minimum (1976) into the rising phase (1977) of cycle 21. Using daily He I 10830 Å spectroheliograms and photospheric magnetograms, we found the following results:
  1. As the magnetic field patterns changed, the solar atmosphere evolved from a structure having a few, large, long-lived, low-latitude coronal holes to one having numerous small, short-lived, high-latitude holes (in addition to the polar holes which persisted throughout this 5-year interval).
  2. The high-latitude holes recurred with a synodic rotation period of 28–29 days instead of the 27-day period already known to be characteristic of low-latitude holes.
  3. During 1976–1977 many coronal holes were intrinsically ‘weak’ in the sense that their average intensities did not differ greatly from the intensity of their surroundings. Such low-contrast holes were rare during 1973–1975.
An updated Bartels display of the occurrence of holes, wind speed, and geomagnetic activity summarizes the evolution of their characteristics and interrelations as the sunspot cycle has progressed. Long-lived, low-latitude holes have become rare but remain terrestrially effective. The more common high-latitude holes are effective only when the Earth lies at a relatively high heliographic latitude in the same solar hemisphere.  相似文献   

15.
Properties of a latitude zonal component of the large-scale solar magnetic field are analyzed on the basis of H charts for 1905–1982. Poleward migration of prominences is used to determine the time of reversal of the polar magnetic field for 1870–1905. It is shown that in each hemisphere the polar, middle latitude and equatorial zones of the predominant polarity of large-scale magnetic field can be detected by calculating the average latitude of prominence samples referred to one boundary of the large-scale magnetic field. The cases of a single and three-fold polar magnetic field reversal are investigated. It is shown that prominence samples referred to one boundary of the large-scale magnetic field do not have any regular equatorward drift. They manifest a poleward migration with a variable velocity up to 30 m s-1 depending on the phase of the cycle. The direction of migration is the same for both low-latitude and high-latitude zones. Two different time intervals of poleward migration are found. One lasts from the beginning of the cycle to the time of polar magnetic field reversal and the other lasts from the time of reversal to the time of minimum activity. The velocity of poleward migration of prominences during the first period is from 5 m s-1 to 30 m s-1 and the second period is devoid of regular latitude drift.  相似文献   

16.
An asymptotic solution of generation equations for the solar mean magnetic field is given and studied. The variation of rotational angular velocity with depth is taken from helioseismological data. Average helicity is prescribed according to the mixing length theory. It is shown that three dynamo waves of the magnetic field are excited. The first wave is generated at the surface layer and concentrates at latitudes of about 60°. Its activity becomes apparent in the poleward migration of the zone of polar faculae formation. The second more powerful wave of the field is excited in the center of the convection zone and its activity shows up in a sunspot cycle. The third wave which is similar to the first wave, is generated at the bottom of the convection zone and attenuates towards the surface. Its activity may appear as a three-fold reversal of the polar magnetic field.  相似文献   

17.
An analysis of the rotation of coronal holes (CHs) spanning 18 years was done based on data from theCatalogue of Coronal Holes (Sanchez-Ibarra and Barraza-Paredes, 1992). A differential rotation of CHs is confirmed for the totality of CHs, but a different behavior was found when those were separated as equatorial or isolated, and polar hole extensions, such as in theCatalogue. Isolated CHs show a typical differential rotation, but polar hole extensions display two different types of behavior: a rotation rate below 40° ± 5° of heliographic latitude, increasing to the equator, and a rotation rate above the same heliographic latitude but increasing to the poles. Also discussed here is how this last result agrees with other studies that indicate the mostly rigid rotation of the corona at higher latitudes.  相似文献   

18.
Sunspot records in the seventeenth century provide important information on the solar activity before the Maunder minimum, yielding reliable sunspot indices and the solar butterfly diagram. Galilei’s letters to Cardinal Francesco Barberini and Marcus Welser contain daily solar observations on 3?–?11 May, 2 June?–?8 July, and 19?–?21 August 1612. These historical archives do not provide the time of observation, which results in uncertainty in the sunspot coordinates. To obtain them, we present a method that minimizes the discrepancy between the sunspot latitudes. We provide areas and heliographic coordinates of 82 sunspot groups. In contrast to Sheiner’s butterfly diagram, we found only one sunspot group near the Equator. This provides a higher reliability of Galilei’s drawings. Large sunspot groups are found to emerge at the same longitude in the northern hemisphere from 3 May to 21 August, which indicates an active longitude.  相似文献   

19.
Shape and structure of the solar corona during the August 1, 2008, total solar eclipse is reported. The August 1, 2008, corona is classified as of near-minimum type with well developed northern and southern polar ray systems over polar coronal holes and several streamers of different brightness at the middle and low heliographic latitude. The flattening index was found to be 0.21.  相似文献   

20.
Observations of the polar magnetic fields were made during the period July 3–August 23, 1968, with the Mt. Wilson magnetograph. The scanning aperture was 5 × 5. The magnetic field was found to be ofS polarity near the heliographic north pole and ofN polarity near the south pole. At lower latitudes the polarity was the opposite. The polarity reversal occurred at a latitude of about +70° in the north and -55° in the south hemisphere. This coincides with the position of the polar prominence zones at that time. The observations indicate that the average field strength at the south pole was well above 5 G.Synoptic charts of the magnetic fields have been plotted in a polar coordinate system for two consecutive solar rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号