首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Thick ice-bearing permafrost is not observed today beneath the deeper channels of the central Queen Elizabeth Islands, Canadian Arctic Archipelago. Analysis of a precision temperature log recently obtained at an offshore well near Ellef Ringnes Island indicates that the thermal regime beneath the seabed is in equilibrium with today's marine environment. If thick permafrost similar to that observed on land today had existed in the Pleistocene in areas that are presently offshore, then such permafrost must have started melting no later than 25000 years ago in order to allow the present thermal regime to evolve. This suggests that the inter-island channels must have been water-filled at least by that date.  相似文献   

2.
东北多年冻土地区地基承载力对气候变化敏感性分析   总被引:1,自引:0,他引:1  
原喜忠  李宁  赵秀云  杨银涛 《岩土力学》2010,31(10):3265-3272
近年来,中国东北多年冻土地区正处于显著的增温过程中。由此导致多年冻土逐渐退化,并严重影响到构筑物的稳定性。以0.05 ℃的年平均气温上升率为背景,采用带有相变的传热学有限元方法,对中国东北多年冻土地区不同初始气温条件和不同含冰量类型冻土的地基温度状况以及季节活动层厚度变化进行了模拟;利用温度场有限元数值试验结果和已有承载力试验数据分析了不同类型冻土地基的力学性质对气温变化敏感性,评估了气温变化对各类冻土地基承载力的影响。气候变化对多年冻土地区构筑物稳定性影响程度取决于两个环节:其一,冻土地基温度状况对气候变化的响应;其二,冻土地基力学性质对地基温度变化的敏感性。研究结果表明,冻土地基含冰量和温度状态对其承载力随气温变化的敏感性具有显著的影响。含土冰层地基承载力对气温变化最为敏感,气温变化对高温冻土地区浅层地基承载力以及桩-土冻结强度影响较大;而深基础桩端冻土地基承载力受气候变化影响相对较小。  相似文献   

3.
Recent work in modern and ancient glacial environments has demonstrated the ability of cold-based glaciers to interact with permafrost. Geological evidence for glacier–permafrost interactions is revealed in Arctic regions where permafrost has persisted since deglaciation. Whilst similar interactions probably occurred near the margins of former ice sheets in the mid-latitudes, this interpretation is rarely applied to unfrozen glacigenic sequences. This review considers the extent to which this alternative hypothesis can explain two key aspects of the glaciotectonic sequences of North Norfolk that have traditionally been attributed to the deformation of unfrozen sediment. The substantial thickness (>10 m) of the pervasively deformed sequences and the preservation of stratified sand intraclasts within them are consistent with deformation at temperatures slightly below the pressure melting point (warm permafrost). Such deformation is also consistent with the pre-glacial environment, which was characterised by continuous permafrost. The hypothesis of deformation at sub-freezing temperatures should be considered more widely when interpreting glaciotectonically deformed, ice-marginal sequences in the mid-latitudes. The application of geological evidence to reconstruct basal thermal regimes beneath former glaciers would complement existing geomorphological inverse models and provide additional information to improve the parameterisation of subglacial processes in numerical ice-sheet models.  相似文献   

4.
热融湖塘对多年冻土的热影响   总被引:10,自引:8,他引:2  
以发育于青藏高原多年冻土区的红梁河热融湖塘为例,研究了热融湖塘附近土体的热状态变化特征,以及其对湖岸多年冻土上、下限影响情况.结果表明:热融湖塘侧向热影响改变了热融湖塘下部和周围区域土体的热状态,使周围土体热状态处于动平衡状态,既受热融湖塘的热影响,也受到周围多年冻土的热影响.热融湖塘对周围浅层土体温度和多年冻土上限影响相对较小,但热融湖塘热影响引起了湖岸边缘的多年冻土上限增大和地温升高.热融湖塘对深部土体温度和多年冻土厚度有较大的影响.  相似文献   

5.
青藏铁路多年冻土区含融化夹层路基的热状态   总被引:1,自引:1,他引:0  
基于青藏铁路K1496+750监测断面含融化夹层路基长达10 a的地温监测数据,分析了在气候转暖及工程活动下天然场地及路基左右路肩下多年冻土热状态年变化过程、融化夹层的年变化过程及其对多年冻土热状态的影响。结果表明:监测断面天然场地、左右路肩下多年冻土上限逐年下降,热稳定性逐年降低;观测期内,左路肩下发育有融化夹层,融化夹层厚度在波动中呈增厚趋势,且其增厚主要是由多年冻土人为上限下降所致,而天然场地及右路肩下未发育融化夹层;多年冻土上限附近土体热积累显著,进而导致多年冻土上限逐年下降及其附近土体温度逐年升高,弱化了多年冻土的热稳定性;后期增加的块石护坡和热管两种具有“主动冷却”效能的工程补强措施很好的改善了路基的热稳定性,右路肩经工程补强措施后,多年冻土人为上限得到显著抬升,热稳定性得到显著改善,而左路肩由于融化夹层的存在,工程补强措施仅仅维持了当前多年冻土热状态,融化夹层的存在一定程度上弱化了工程补强措施所产生的冷却效能。  相似文献   

6.
The permafrost on the Qinghai-Tibet Plateau(QTP) is unstable and sensitive to thermal disturbance due to the combined influences of anthropogenic forcing and global warming on the unique environmental background for permafrost development and preservation. Observations in about 40 years show natural and engineering environments of permafrost region along Qinghai-Tibet Highway(QTH)have changed significantly. The change of permafrost environments on the plateau will result in the remarkable shifts of physical geography and engineering geological environments. In addition, permafrost on the QTP responses actively and feedbacks to global climatic changes significantly. The study of permafrost on the plateau is no less important than the Arctic and Antarctic, and also provide a valuable linkage of climatic and environmental change studies between the other two poles. As the development of the plateau and adjacent areas in large scale is eminent, permafrost as the most important natural environmental factor, its stability and possible changes are extremely important in regional economical development. Therefore, the prediction of these changes and reasonable assessment of permafrost engineering conditions on the plateau based on permafrost monitoring are indispensable for the healthy and sustainable economical development in these regions.  相似文献   

7.
冻土区甲烷排放研究进展   总被引:6,自引:0,他引:6  
冻土区土牡表面和活动层土的CH排放和吸收表现出强烈的时空变化性。根据多年冻土中CH含量的模拟结果表明,全球尺度上,平均每米厚度多年冻土含有CH65Tg。在未来的200年间,多年冻土融化所导致的大气CH附加年源强变化于2~25Tg。  相似文献   

8.
青藏铁路碎石护坡-热管复合措施的补强效果研究   总被引:2,自引:1,他引:1  
青藏铁路高温冻土区的普通路基和保温材料路基均处于热不稳定状态, 需要对它们增设碎石护坡-热管复合措施来强化处理, 新增设的补强措施对路基下部冻土的保护效果如何是人们极为关心的问题. 因此, 对北麓河高温高含冰量路段增设了碎石护坡及热管的复合补强措施后路基下部土体的热状态进行观测.结果显示:普通路基在增设补强措施后, 人为冻土上限进一步抬升, 阴阳坡下均出现显著的降温趋势, 且路基下温度场逐渐趋于对称, 降温范围逐渐向路基中心及深部发展, 路堤中心深部地温仍处于增温状态, 但增温趋势明显缓减; 保温材料路基在增设补强措施后, 人为冻土上限也进一步的抬升至保温板附近, 融化夹层在2个冻融周期后消失, 路堤中心温度在2个冻融周期后出现了降温趋势. 这些效果说明, 补强措施在调控路基内部及下部多年冻土温度时发挥了积极作用.  相似文献   

9.
魏彦京  温智  高樯  张明礼  施瑞  孔森 《冰川冻土》2019,41(5):1078-1086
通过建立管道与多年冻土热相互作用的计算模型,利用数值分析方法探究了不同管温(输运温度)工况下冷输天然气管道对管周土体冻融过程和多年冻土热稳定性的影响。研究表明:5℃正温输运天然气管道可造成下覆冻土上限下降约11倍管径,管周多年冻土退化严重;0℃输运会导致管底下部高温不稳定冻土范围扩大,管底土体强度及承载性能降低,不利于保持多年冻土和管道运营稳定性;-1℃和-5℃负温输运可有效提高冻土人为上限,保持管底冻土温度稳定,但-5℃时管道下部土体温度降低明显,可能导致冻胀病害发生。就管周冻土热稳定性而言,在青藏高原多年冻土区采用冷输(负温输送)工艺输运天然气有利于保护管周多年冻土,是可行的。  相似文献   

10.
青藏高原冻土区路面类型对路基温度场影响的非线性分析   总被引:4,自引:1,他引:3  
采用焓模型, 建立含相变的冻土路基温度场, 综合考虑气温、太阳辐射、风速风向、坡面蒸发等气象因素, 将诸多气象因素归结为第二、三类边界条件的叠加组合, 对不同气温地区的沥青路面及水泥路面路基温度场进行了有限元计算. 结果表明: 路面类型对冻土路基温度场有着重要影响, 水泥路面的采用可有效地降低路面温度, 延缓冻土上限下降速率, 从而可以有效保护基底多年冻土; 从对基底冻土上限影响的角度来看, 路面类型、外部气温与路基高度三者间存在一定的动态等效关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号