首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We calculated equilibrium chemical composition of a mixture of meteoritic vapor and air during fireball events, i.e. during penetration of large meteoroids into terrestrial atmosphere. Different types of fireballs were considered, and calculations were performed for wide ranges of temperatures and pressures. Chemical composition at the quenching point was estimated by comparison of hydrodynamic and chemical reaction time scales. For the typical fireball temperatures of 4000-5000 K, most elements are expected to be in the form of atoms and ions. Notable exceptions are Si and C, which are expected to be mainly in the form of SiO and CO. Other molecules abundant at these temperatures are N2 and NO. Metal monoxides are most abundant at 2000-2500 K and are formed during the cooling phase. Conditions for formation of other molecules such as , CN, C2 and OH were also considered. The composition of freshly ablated meteoroid material was studied using the MAGMA code.  相似文献   

2.
Abstract— In the early morning hours of December 13, 2002, a bright Geminid fireball with an absolute magnitude of ?9.2 ± 0.5 was observed from Southern Saskatchewan, Canada. The fireball displayed distinct small‐scale oscillations in brightness, or flickering, indicative of the parent meteoroid being both non‐spherical and rotating. Using the light curve derived from a calibrated radiometer, we determine a photometric mass of 0.429 ± 0.15 kg for the meteoroid, and we estimate from its initial rotation rate of some 6 Hz that the meteoroid was ejected from the parent body (3200) Phaethon some 2500 ± 500 years ago. We find that 70% of Geminid fireballs brighter than magnitude ?3 display distinct flickering effects, a value that is in stark contrast to the 18% flickering rate exhibited by sporadic fireballs. The high coincidence of flickering and the deep atmospheric penetration of Geminid fireballs are suggestive of Geminid meteoroids having a highly resilient structure, a consequence, we suggest, of their having suffered a high degree of thermal processing. The possibility of Gemind material surviving atmospheric ablation and being sampled is briefly discussed, but the likelihood of collecting and identifying any such material is admittedly very small.  相似文献   

3.
Three bright fireballs belonging to the August θ‐Aquillid (ATA) meteor shower were photographed by the Tajikistan fireball network in 2009. Two of them are classified as the meteorite‐dropping fireballs according to the determined parameters of the atmospheric trajectories, velocities, masses, and densities. Detection of the more dense bodies among cometary meteoroids points to a heterogeneous composition of the parent comet, and supports the suggestion that some meteorites might originate in the outer solar system, in the given case from the Jupiter‐family comet reservoir. A search for the stream's parent was undertaken among the near‐Earth asteroids (NEAs); as a result, the asteroid 2004MB6 was identified as a possible progenitor of the ATA meteoroid stream. Investigation of the orbital evolution of the 2004MB6 and the fireball‐producing meteoroid TN170809A showed that both objects have similar secular variations in the orbital elements during 7 kyr. The comet‐like orbit of the 2004MB6 and its association with the ATA shower suppose a cometary origin of the asteroid.  相似文献   

4.
A detailed analysis of a photographic spectrum of a Geminid fireball obtained in December 14, 1961 at the Ondrejov Observatory is presented. We have computed a synthetic spectrum for the fireball and compared it with the observed spectrum assuming chemical equilibrium in the meteor head. In this way we have determined relative chemical abundances in meteor vapors. Comparing the relative chemical abundances of this Geminid meteoroid with those obtained from meteoroids associated with comets 55P/Tempel-Tuttle and 109P/Swift-Tuttle we found no significant chemical differences in main rock-forming elements. Despite of this similarity, the deepest penetration of the Geminid meteoroids and their ability to reach high rotation rates in space without fragmentation suggest that thermal processing is affecting their physical properties. We suggest that as consequence of space weathering a high-strength envelope is produced around these particles. In this picture, heating processes of the mineral phases could result in the peculiar properties observed during atmospheric entry of the Geminid meteoroids, especially their strength, which is evidenced by its resistance to ablation. Finally, although one meteoroid cannot be obviously considered as representative of the composition of its parent body, we conclude that 3200 Phaethon is able to produce millimetre-size debris nearly chondritic in composition, but the measured slight overabundance of Na would support a cometary origin for this body.  相似文献   

5.
Abstract— We present instrumental observations of the Tagish Lake fireball and interpret the observed characteristics in the context of two different models of ablation. From these models we estimate the pre‐atmospheric mass of the Tagish Lake meteoroid to be ?56 tonnes and its porosity to be between 37 and 58%, with the lowest part of this range most probable. These models further suggest that some 1300 kg of gram‐sized or larger Tagish Lake material survived ablation to reach the Earth's surface, representing an ablation loss of 97% for the fireball. Satellite recordings of the Tagish Lake fireball indicate that 1.1 times 1012 J of optical energy were emitted by the fireball during the last 4 s of its flight. The fraction of the total kinetic energy converted to light in the satellite pass band is found to be 16%. Infrasonic observations of the airwave associated with the fireball establish a total energy for the event of 1.66 ± 0.70 kT TNT equivalent energy. The fraction of this total energy converted to acoustic signal energy is found to be between 0.10 and 0.23%. Examination of the seismic recordings of the airwave from Tagish Lake have established that the acoustic energy near the sub‐terminal point is converted to seismic body waves in the upper‐most portion of the Earth's crust. The acoustic energy to seismic energy coupling efficiency is found to be near 10?6 for the Tagish Lake fireball. The resulting energy estimate is near 1.7 kT, corresponding to a meteoroid 4 m in diameter. The seismic record indicates extensive, nearly continuous fragmentation of the body over the height intervals from 50 to 32 km. Seismic and infrasound energy estimates are in close agreement with the pre‐atmospheric mass of 56 tonnes established from the modeling. The observed flight characteristics of the Tagish Lake fireball indicate that the bulk compressive strength of the pre‐atmospheric Tagish Lake meteoroid was near 0.25 MPa, while the material compressive strength (most appropriate to the recovered meteorites) was closer to 0.7 MPa. These are much lower than values found for fireballs of ordinary chondritic composition. The behavior of the Tagish Lake fireball suggests that it represents the lowest end of the strength spectrum of carbonaceous chondrites or the high end of cometary meteoroids. The bulk density and porosity results for the Tagish Lake meteoroid suggest that the low bulk densities measured for some small primitive bodies in the solar system may reflect physical structure dominated by microporosity rather than macroporosity and rubble‐pile assemblages.  相似文献   

6.
Abstract— Data from the X‐ray and γ‐ray spectrometers onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft were used to constrain the chemical and mineralogical composition of asteroid 433 Eros (McCoy et al. 2001). The bulk composition appears to be consistent with that of L to H chondrites (Nittler et al. 2001). However, there appeared to be a marked depletion relative to ordinary chondritic composition in the S/Si ratio (0.014 ± 0.017). We investigate space weathering mechanisms to determine the extent to which sulfur can be preferentially lost from the surface regolith. The two processes considered are impact vaporization by the interplanetary meteoroid population and ion sputtering by the solar wind. Using impact data for Al projectiles onto enstatite, we find that the vaporization rate for troilite (FeS) is nine times as fast as that for the bulk of the regolith. If 20% of the iron is in the form of troilite, then the net vaporization rate, normalized to bulk composition, is 2.8 times faster for sulfur than for iron. Sputtering is equally efficient at removing sulfur as impact vaporization.  相似文献   

7.
The interaction between a large meteoroid and the atmosphere is modeled as its destruction into a cloud of fragments and vapors moving with a common shock wave. Under the action of aerodynamic forces the shape of this cloud is deformed—it is expanded in the direction transverse to the motion and compressed in the longitudinal direction. With allowance for the pressure distribution over the surface of a body varying its shape (it is assumed that the sphere is transformed into a flattened spheroid), the relation for the rate of increase in the midsection radius of a fragmented meteoroid has been obtained. This rate significantly depends on the degree of the meteoroid flattening which leads to a significantly smaller increase in the transverse size of the meteoroid along the trajectory as compared to similar models used in the literature where the influence of the body shape was not considered. The proposed model also takes into account the change in the density of the cloud of fragments due to an increase in gaps between them. An approximate analytical solution of equations of the physical theory of meteors with drag and heat transfer coefficients varying along the trajectory has been obtained for a fragmented meteoroid. The interaction of the Chelyabinsk meteoroid with the atmosphere is modeled and the solution obtained for the energy release curve is compared with the observational data.  相似文献   

8.
The ballistic coefficients and ablation parameters of Prairie Network (United States) fireballs are determined by the best fitting in velocity–height variables. The braking trajectories based on the model of successive destruction with ablation are used as the test functions. The fitting accuracy of the observed trajectory was found to be approximately the same for the model of successive destruction and for the model of motion of a single body. At least, the fitting accuracy allows us neither to confirm nor to reject the fragmentation of meteoroids within the luminous segment of the trajectory. The previously noted excess of the observed luminosity of the fireballs studied here (Popova, 1997) over the value calculated for the dynamical mass, which was estimated from the model of a single body (Kulakov and Stulov, 1992), can be explained by deviations of the meteoroid shapes from a sphere.  相似文献   

9.
Abstract— A recently published meteoroid fragmentation model (FM) was applied to observational data on the Tagish Lake meteoric fireball. An initial mass of 56,000 kg, derived from seismic and infrasound data by Brown et al. (2002), proved to be consistent with a very low value of intrinsic ablation coefficient of 0.0009 s2 km?2. The average residual of the best fit to the observed light curve was ±0.10 stellar magnitude. The apparent ablation coefficient varied from 0.0009 to 1.52 s2 km?2 with an average value of 0.054 s2 km?2 (determined by the gross fragmentation [GF] model). The FM found 33 individual fragmentation events during the penetration of the 56,000 kg initial mass of the Tagish Lake meteoroid through the atmosphere, with five of the events fragmenting more than 10% of the instantaneous mass of the main body. The largest event fragmented 88% of the mass of the main body at a height of 34.4 km. The velocity of the main body mass of 2660 kg at a height of 29.2 km (the last observed light) was 13.1 km/s. Strong fragmentation at heights lower than 29.2 km is very probable. The extreme fragmentation process of the Tagish Lake meteoroid puts its classification well outside the IIIB type in the direction of less cohesive bodies. The light curve could not be explained at all by making use of only the apparent ablation coefficient and apparent luminous efficiency.  相似文献   

10.
We present a survey of 97 spectra of mainly sporadic meteors in the magnitude range +3 to −1, corresponding to meteoroid sizes 1-10 mm. For the majority of the meteors, heliocentric orbits are known as well. We classified the spectra according to relative intensities of the lines of Mg, Na, and Fe. Theoretical intensities of these lines for a chondritic composition of the meteoroid and a wide range of excitation and ionization conditions were computed. We found that only a minority of the meteoroids show chondritic composition. Three distinct populations of Na-free meteoroids, each comprising ∼10% of sporadic meteoroids in the studied size range, were identified. The first population are meteoroids on asteroidal orbits containing only Fe lines in their spectra and possibly related to iron-nickel meteorites. The second population are meteoroids on orbits with small perihelia (q?0.2 AU), where Na was lost by thermal desorption. The third population of Na-free meteoroids resides on Halley type cometary orbits. This material was possibly formed by irradiation of cometary surfaces by cosmic rays in the Oort cloud. The composition of meteoroids on Halley type orbits is diverse, probably reflecting internal inhomogeneity of comets. On average, cometary dust has lower than chondritic Fe/Mg ratio. Surprisingly, iron meteoroids prevail among millimeter-sized meteoroids on typical Apollo-asteroid orbits. We have also found varying content of Na in the members of the Geminid meteoroid stream, suggesting that Geminid meteoroids were not released from their parent body at the same time.  相似文献   

11.
High entry speed (>25 km s?1) and low density (<2500 kg m?3) are the two factors that lower the chance of a meteoroid to drop meteorites. The 26 g carbonaceous (CM2) meteorite Maribo recovered in Denmark in 2009 was delivered by a bright bolide observed by several instruments across northern and central Europe. By reanalyzing the available data, we confirmed the previously reported high entry speed of (28.3 ± 0.3) km s?1 and trajectory with slope of 31° to the horizontal. In order to understand how such a fragile material survived, we applied three different models of meteoroid atmospheric fragmentation to the detailed bolide light curve obtained by radiometers located in Czech Republic. The Maribo meteoroid was found to be quite inhomogeneous with different parts fragmenting at different dynamic pressures. While 30–40% of the (2000 ± 1000) kg entry mass was destroyed already at 0.02 MPa, another 25–40%, according to different models, survived without fragmentation up to the relatively large dynamic pressures of 3–5 MPa. These pressures are only slightly lower than the measured tensile strengths of hydrated carbonaceous chondrite (CC) meteorites and are comparable with usual atmospheric fragmentation pressures of ordinary chondritic (OC) meteoroids. While internal cracks weaken OC meteoroids in comparison with meteorites, this effect seems to be absent in CC, enabling meteorite delivery even at high speeds, though in the form of only small fragments.  相似文献   

12.
Abstract— Detailed analysis of the fragmentation of the Morávka meteoroid during the atmospheric entry is presented. The analysis is based on the measurement of trajectories and decelerations of fragments seen in a video and at the locations of energetic fragmentation events from seismic data obtained at several stations in the vicinity of the fireball trajectory. About 100 individual fragments are seen on video frames. Significant deceleration of the fireball at heights of ?45 km revealed that the meteoroid had already fragmented into ?10 pieces with masses of 100–200 kg, though the fireball still appeared as a single object. At heights of 37–29 km, all primary fragments broke‐up again under dynamic pressures up to 5 MPa. The cascade fragmentation then continued, even though smaller pieces breaking off from the larger masses were increasingly decelerated and the dynamic pressure acting upon them decreased. At each fragmentation, a significant part of the mass was lost in the form of dust or tiny particles. This was the dominant process of mass loss. The continuous ablation due to melting and evaporation of the meteoroid surface was less efficient with a corresponding ablation coefficient of only 0.003 s2 km‐2. During fragmentation, some pieces achieved lateral velocities up to 300 m/s, about an order of magnitude more than can be explained by aerodynamic loading. The fragmentation continued even after ablation ceased, as demonstrated by the incomplete fusion crust covering all recovered fragments. We estimate that several hundreds of meteorites of a total mass of ?100 kg landed, mostly in a mountainous area not suitable for systematic meteorite searches. Six meteorites with a total mass of 1.4 kg were recovered up to the end of May 2003. Their positions are consistent with the calculated strewn field.  相似文献   

13.
Abstract— We present data for 259 meteoric fireballs observed with the Canadian camera network, including velocities, heights, orbits, luminosities along each trail, estimates of preatmospheric masses and surviving meteorites (if any) as well as membership in meteor showers. Some 213 of the events comprise an unbiased sample of the 754 fireballs observed in a total of 1.51 × 1010 km2 h of clear-sky observations. The number of fireballs and the amount of clear sky in which they were recorded are given for each day of the year. We find at least 37% of the unbiased sample are members of some 15 recognized meteor showers. Preatmospheric masses, based on an assumed luminous efficiency of 0.04 for velocities >10 km s?1, range from 1 g for some very fast fireballs up to hundreds of kilograms for the largest events. We present plots and equations for the flux, as a function of initial mass, for the entire group of fireballs and for some subgroups: meteorite-dropping objects; meteor shower members; groups that appear to be mainly of asteroidal or cometary origin; and for very fast objects. For masses of a few kilograms, asteroidal objects outnumber cometary ones. Cometary objects attain greater peak brightness than asteroidal ones of equal mass largely due to higher velocity, but also because they fragment more severely. For 66 fireballs, we estimate the meteoroid density using photometric and dynamic masses. Presumed cometary objects have typical densities near 1.0, while asteroidal values show two groups that suggest meteoroids similar to carbonaceous and ordinary chondrites. Our basic data may be used by others for further studies or to reexamine our results using assumptions different from those employed in this paper.  相似文献   

14.
Sixty fireball cameras operated in Western Canada from 1971 to 1985. Over one thousand (1016) fireballs were recorded at more than one station, but only 367 were reduced, of which 285 have been published, including that of the Innisfree meteorite. Digitization of all the data is underway, and procedures are being developed which will allow the automatic reduction of events not previously examined. The results of the analysis of 80 fireballs reduced but not previously published are presented. When the new analysis is complete, the MORP archive will be a valuable source of information on meteoroid orbits.  相似文献   

15.
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.  相似文献   

16.
Laura Schaefer 《Icarus》2004,169(1):216-241
We modified the MAGMA chemical equilibrium code developed by Fegley and Cameron (1987, Earth Planet. Sci. Lett. 82, 207-222) and used it to model vaporization of high temperature silicate lavas on Io. The MAGMA code computes chemical equilibria in a melt, between melt and its equilibrium vapor, and in the gas phase. The good agreement of MAGMA code results with experimental data and with other computer codes is demonstrated. The temperature-dependent pressure and composition of vapor in equilibrium with lava is calculated from 1700 to 2400 K for 109 different silicate lavas in the ONaKFeSiMgCaAlTi system. Results for five lavas (tholeiitic basalt, alkali basalt, Barberton komatiite, dunite, and a molten type B1 Ca, Al-rich inclusion) are discussed in detail. The effects of continuous fractional vaporization on chemistry of these lavas and their equilibrium vapor are presented. The predicted abundances (relative to Na) of K, Fe, Si, Al, Ca, and Ti in the vapor equilibrated with lavas at 1900 K are lower than published upper limits for Io's atmosphere (which do not include Mg). We predict evaporative loss of alkalis, Fe, and Si during volcanic eruptions. Sodium is more volatile than K, and the Na/K ratio in the gas is decreased by fractional vaporization. This process can match Io's atmospheric Na/K ratio of 10±3 reported by Brown (2001, Icarus 151, 190-195). Silicon monoxide is an abundant species in the vapor above lavas. Spectroscopic searches are recommended for SiO at IR and mm wavelengths. Reactions of metallic vapors with S- and Cl-bearing volcanic gases may form other unusual gases including MgCl2, MgS, MgCl, FeCl2, FeS, FeCl, and SiS.  相似文献   

17.
Abstract— An ~4 × 9 × 12-mm concentration of metal (dubbed RC1) situated between silicate melt and a relict chondritic clast in the Rose City H5 impact-melt breccia is compositionally heterogeneous. Approximately 65 wt% of RC1 is enriched in the refractory siderophile elements, Os and Ir, by 30–40% relative to bulk H chondrite metal; ~20 wt% is depleted in these elements by 31–35%; and 15 wt% is depleted by a considerably greater amount (75%). Common and volatile siderophile elements are essentially unfractionated in all three regions; W is fractionated to only a moderate degree. The compositions of the different regions of RC1 are similar to those of previously analyzed metal nodules and veins in shocked but unmelted ordinary chondrites. All of these objects probably formed by a complex process involving vaporization of chondritic material, rapidly followed by oxidation of W to form volatile oxides, fractional condensation of refractory siderophile elements, transport of the residual vapor (containing common and volatile siderophile elements as well as W oxide) and condensation of this vapor in fractures and voids or on metallic liquid substrates. The common occurrence of vugs in shock-heated chondrites and the pervasiveness of vaporization effects recorded in metal masses and veins underscores the important role of superheating in the formation of impact breccias.  相似文献   

18.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

19.
We discuss the out-of-ecliptic component of the interplanetary dust cloud and its relation to the other small bodies in the solar system. The determination of the mass loss of comets, so far is quite uncertain and doesn't allow a finite study of the mass input to the dust cloud. However it is shown, that the dust particles in the inner solar system, i.e. within the earth orbit are most probable produced from a collisional evolution of larger, meteoroid, fragments of cometary origin. A further component of interstellar dust is especially important in the outer solar system and perhaps for the collisional evolution of the small bodies.  相似文献   

20.
The entry and subsequent breakup of the ~17–20 m diameter Chelyabinsk meteoroid deposited approximately 500 kT of TNT equivalent energy to the atmosphere, causing extensive damage that underscored the hazard from small asteroid impacts. The breakup of the meteoroid was characterized by intense fragmentation that dispersed most of the original mass. In models of the entry process, the apparent mechanical strength of the meteoroid during fragmentation, ~1–5 MPa, is two orders of magnitude lower than the mechanical strength of the surviving meteorites, ~330 MPa. We implement a two-material computer code that allows us to fully simulate the exchange of energy and momentum between the entering meteoroid and the interacting atmospheric air. Our simulations reveal a previously unrecognized process in which the penetration of high-pressure air into the body of the meteoroid greatly enhances the deformation and facilitates the breakup of meteoroids similar to the size of Chelyabinsk. We discuss the mechanism of air penetration that accounts for the bulk fragmentation of an entering meteoroid under conditions similar to those at Chelyabinsk, to explain the surprisingly low values of the apparent strength of the meteoroid during breakup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号