首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shore-normal array of seven, bi-directional electromagnetic flowmeters and nine surface piercing, continuous resistance wave staffs were deployed across a multiple barred nearshore at Wendake Beach, Georgian Bay, Canada, and monitored for a complete storm cycle. Time-integrated estimates of total (ITVF) and net (INVF) sediment volume flux together with bed elevation changes were determined using depth-of-activity rods.

The three bars, ranging in height from 0.10 to 0.40 m accreted during the storm (0.03 m), and the troughs were scoured (0.05 m). Sediment reactivation depths reached 0.14 m and 12% of the nearshore control volume was mobilized. However, the INVF value for the storm was less than 1% of the control volume revealing a near balance in sediment volume in the bar system. Landward migration of the inner, crescentic and second, sinuous bars occurred in association with an alongshore migration of the bar form itself; the outermost, straight, shore-parallel bar remained fixed in location.

The surf zone was highly dissipative throughout the storm (ε = 3.8 × 102–192 × 102) and the wave spectrum was dominated by energy at the incident frequency. Spectral peaks at frequencies of the first harmonic and at one quarter that of the incident wave were associated with secondary wave generation just prior to breaking and a standing edge wave, respectively. The former spectral peak was within the 95% confidence band for the spectrum while the latter contributed not more than 10% to the total energy in the surface elevation spectrum even near the shoreline.

During the storm wave height exceeded 2 m (Hs) and periods reached 5 s (Tp k): orbital velocities exceeded 0.5 m s−1 (urm s) and were above the threshold of motion for the medium-to-fine sands throughout the storm. Shore-parallel flows in excess of 0.4 m s−1 were recorded with maxima in the troughs and minima just landward of the bar crest.

The rate and direction of sediment flux is best explained by the interaction of antecedent bed slopes with spatial gradients in the mean and asymmetry of the shore-normal velocity field. These hydrodynamic parameters represent “steady” flows superimposed on the dominantly oscillatory motion and assumed a characteristic spatial pattern from the storm peak through the decay period. Increases spatially in the magnitudes of both the mean flows and flow asymmetries cause an increasing net transport potential (erosion); decreases in these values spatially cause a decreasing net transport potential and thus deposition. These transport potentials are increased or decreased through the gravity potential induced by the local bed slope. Shore-parallel flow was important in explaining sediment flux and morphological change where orbital velocities, mean flows and flow asymmetries were at a minimum.  相似文献   


2.
Sediment-level oscillations with heights of about 6 cm and shore-normal lengths of order 10 m have been measured in the swash zone of a high-energy, coarse-sand beach. Crests of oscillations were shore parallel and continuous alongshore. The oscillations were of such low steepness (height-to-length ratio approximately 0.006) that they were difficult to detect visually. The period of oscillation ranged between 6 and 15 min and decreased landward across the swash zone. The sediment-level oscillations were progressive landward with an average migration rate in the middle to upper swash zone of 0.8 m min−1. Migration was caused mostly by erosion on the seaward flank of the crest of an oscillation during a period of net seaward sediment transport. Thus, the observed migration was a form migration landward rather than a migration involving net landward sediment transport. The observed sediment-level oscillations were different than sand waves or other swash-zone bedforms previously described.  相似文献   

3.
Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms.

Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999–2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000–2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999–2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer.

A northeast storm on March 5–6, 2001, resulted in currents in excess of 1 m s−1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches reached and exceeded their pre-storm elevation and began to show berm buildup characteristic of the summer months.  相似文献   


4.
Cross-shore sediment transport rate exposed to waves is very important for coastal morphology,the design of marine structures such as seawalls,jetties,breakwaters etc,and the prevention of coastal erosion and accretion due to on-off shore sediment transportation.In the present study,the experiments on cross-shore sediment transport are carried out in a laboratory wave channel with initial beach slopes of 1/8,1/10 and 1/15.By using the regular waves with different deep-water wave steepnesses generated by a pedal-type wave generator,the geometrical characteristics of beach profiles under storm conditions and the parameters affecting on-off shore sediment transport are investigated for the beach materials with medium diameters of d50=0.25,0.32,0.45,0.62 and 0.80 mm.The offshore bar geometric characteristics are the horizontal distances from the shoreline to the bar beginning(Xb),crest(Xt),and ending(Xs) points,the depth from the bar crest to the still water level(ht),and the bar volume(Vbar).The experimental results have indicated that when the deep-water steepness(H0/L0) increased,the net movement to seaside increased.With the increasing wave steepness,the bars moved to widen herewith the vertical distances from still water level to the bar beginning(Xb),crest(Xt) and ending(Xs) points and the horizontal distances from the coast line to the bar beginning,crest and ending points increased.It was also shown from experimental results that the horizontal distances from the bar beginning and ending points to the coast line increased with the decrease of the beach slope.The experimental results obtained from this study are compared with previous experimental work and found to be of the same magnitude as the experimental measurements and followed the expected basic trend.  相似文献   

5.
Hydrodynamic and sediment transport measurements from instrumentation deployed during a 54-day winter period at two sites on the Louisiana inner shelf are presented. Strong extratropical storms, with wind speeds of 7.8 to 15.1 m s-1, were the dominant forcing mechanism during the study. These typically caused mean oscillatory flows and shear velocities about 33% higher than fair weather (averaging 12.3 and 3.2 cm s-1 at the landward site, and 11.4 and 2.7 cm s-1 at the seaward site, respectively). These responses were coupled with mean near-bottom currents more than twice as strong as during fair weather (10.3 and 7.5 cm s-1 at the landward and seaward sites, respectively). These flowed in approximately the same direction as the veering wind, causing a net offshore transport of fine sand. Weak storms were responsible for little sediment transport whereas during fair weather, onshore sand transport of approximately 25-75% of the storm values appears to have occurred. This contradicts previous predictions of negligible fair-weather sediment movement on this inner shelf.  相似文献   

6.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   

7.
B. Manighetti  L. Carter 《Marine Geology》1999,160(3-4):271-300
Side-scan, seismic and surficial sediment data accompanied by current meter records highlight across-shelf sediment transport in Hauraki Gulf, an island-studded embayment off northern New Zealand. Calm weather currents are locally dominated by the tides, with periodic incursions of oceanic water from detached meanders of the East Auckland Current. Under these conditions, bedload transport occurs mainly in three 15–20 km-wide channels, where bathymetric intensification of the flow brings about near-bottom speeds of up to 82 cm s−1 for Colville Channel and 33–44 cm s−1 in Jellicoe and Cradock Channels. Surficial sediments are gravelly to muddy sand, winnowed in places, leaving a lag deposit of mainly biogenic carbonate gravel. Modelling results suggest that in Colville Channel, dominant fine to medium sand modes are mobile for 20–60% of the time, with a net eastward movement for fine sand. In Jellicoe and Cradock Channels, the prevailing direction of transport is southwards across the shelf, with sand mobile for up to 33% of the time. Oceanic incursions have the potential to boost flow in the western Gulf, however such incursions are transitory, and there is no measurable expression of oceanic water in the sedimentary record. Because of their association with prolonged periods of calm weather, the incursions are unlikely to accompany storm events, where their cumulative effect might be important for sediment transport. Near-bottom currents resulting from oceanic incursion may reinforce peak tides inside the Gulf by up to 2–4 cm s−1. Enhancement of prevailing water motions occurs during periods of extreme weather. During cyclone Drena (January 1997), measured flow speeds in Jellicoe Channel reached 48 cm s−1. Furthermore, the disturbance generated large waves that stirred bottom sediments down to over 100 m water depth. Such events are probably the major agent of sediment redistribution in the Hauraki Gulf. The net effect of storm and calm weather currents is to move sediment across the outer to middle shelf where, in the western and central Gulf it accumulates, and in the eastern Gulf it escapes eastward via Colville Channel.  相似文献   

8.
《Coastal Engineering》2005,52(6):473-495
Seadikes often fail due to wave overtopping and a failure of the landward slope. Therefore, these aspects have to be taken into account for the design of seadikes. In present design, the calculation of the crest height of seadikes is essentially based on using a design water level and the corresponding wave run-up height. An average overtopping rate is generally considered for wave overtopping which can not account for the stresses and other effects due to extreme individual overtopping events. Landward slope design is more or less based on experience. It can be concluded from failure analysis that dike failures on the landward slope are rather initiated by individual overtopping events, in particular by the related overtopping flow velocities and layer thicknesses which are relevant for the prediction of erosion, infiltration and slip failure. Therefore, overtopping flow velocities and layer thicknesses are required in addition to average overtopping rates as hydraulic boundary conditions for the geotechnical stability analysis of seadikes.The objective of the present paper is the theoretical and experimental determination of overtopping flow velocities and layer thicknesses on the seaward slope, the dike crest and the landward slope of a seadike. Overtopping parameters are derived on the basis of small scale model tests which are required for the design of the landward slope and to avoid dike failures by wave overtopping in the future. For the prediction of the layer thicknesses and the velocities of the overtopping flow on the seaward slope, the dike crest and the landward slope, a set of theoretical formulas is derived and validated by hydraulic scale model tests.  相似文献   

9.
Time-series of nearbed horizontal flow velocities and suspended sediment concentrations obtained from a colocated electromagnetic current meter (EMCM) and optical backscatter sensor (OBS), respectively, are used to examine the relative importance of steady and fluctuating components to the total sediment transport over a full tidal cycle on a macrotidal, intermediate beach (Spurn Head, UK). Fluctuating sediment fluxes are decomposed into gravity and infragravity contributions using co-spectral techniques. The relative importance of the oscillatory (gravity and infragravity) and steady (mean) transport components to the total sediment transport is analysed throughout the tidal cycle.

A continuum of 34 discrete suspended sediment-cross-shore velocity co-spectra are computed over a full tidal cycle for the OBS and EMCM measurements 0.10 m above the bed. These net transport spectra vary greatly both with cross-shore location and tidal state. In particular, a marked asymmetry in transport processes is evident between the flood and ebb tides, with high levels of sediment resuspension and transport occurring on the ebbing tide approximately two hours after high water (just seaward of the breakpoint). At this time the dominant transport was directed offshore (co-spectral peak, 0.04 kg/m2/s) at incident wave frequency.

Typical patterns are observed in transport spectra outside the surf zone and within the inner surf zone. Outside the narrow surf zone cross-shore transport spectra show weak offshore transport (co-spectral peak = 0.002 kg/m2/s) associated with bound long waves and stronger onshore transport (co-spectral peak = 0.006 kg/m2/s) at incident wave frequencies. Conversely, co-spectra computed within the inner surf zone show the offshore sediment fluxes (spectral peak = 0.010 kg/m2/s) at infragravity frequencies to be greater in magnitude than the corresponding onshore transport (co-spectral peak = 0.008 kg/m2/s) occurring at incident wave frequencies.  相似文献   


10.
《Coastal Engineering》1999,36(3):171-195
A morphological stability analysis is carried out for a long straight coast with a longshore bar. The situation with oblique wave incidence and a wave-driven longshore current is considered. The flow and sediment transport are described by a numerical modelling system. The models comprise: (i) a wave model with depth refraction, shoaling and wave breaking, (ii) a depth integrated model for wave driven currents and (iii) a sediment transport model for the bed load transport and the suspended load transport in combined waves and current. The direction of the sediment transport is taken to be parallel to the depth integrated mean current velocity, neglecting the effects of a bed slope and secondary currents. An instability is found to develop around the bar crest. The instability is periodic in the alongshore direction, and tends to form rip channels and to steepen the offshore face of the bar between the rip channels. The alongshore wave length of the most unstable perturbation is determined for different combinations of the wave conditions and the geometry of the profile.  相似文献   

11.
刘诚  梁燕  彭石  侯堋 《海洋学报》2017,39(1):1-10
本文建立曲线坐标系下的双曲型缓坡方程波浪模型和考虑波浪辐射应力影响的深度平均2D潮流数学模型,首次研究了磨刀门河口2011年地形条件下的枯季波生流场。受波浪作用影响,落潮阶段,波浪作用方向与流向相反,在波浪顶托效应下拦门沙沙脊及外坡处流速普遍减小,形成两个主要回流区,口门外东西两侧浅滩处流速也减小,东西两汊及横洲深槽流速增大;涨潮阶段,波浪作用方向与流向相同,拦门沙沙脊及外坡处流速增大,沙脊处出现冲越流,口门两侧浅滩处流速增大,横洲深槽流速减小。  相似文献   

12.
Spatial distribution of wave overtopping water behind coastal structures   总被引:1,自引:0,他引:1  
Spatial distribution of random wave overtopping water behind coastal structures was investigated using a numerical model based on Reynolds-Averaged Navier-Stokes solver (RANS) and Volume of Fluid (VOF) surface capturing scheme (RANS-VOF). The computed spatial distributions of wave overtopping water behind the structure agree well with the measurements by Pullen et al (2008) for a vertical wall and Lykke Andersen and Burcharth (2006) for a 1:2 sea dike. A semi-analytical model was derived to relate spatial distribution of wave overtopping water behind coastal structures to landward ground level, velocity and layer thickness on the crest. This semi-analytical model agrees reasonably well with both numerical model results and measurements close to coastal structures. Our numerical model results suggest that the proportion of wave overtopping water passing a landward location increases with a seaward slope when it is less than 1:3 and decreases with a seaward slope when it gets steeper. The proportion of wave overtopping water passing a landward location increases with landward ground level and overtopping discharge. It also increases with the product of incident wave height and wavelength, but decreases with increasing relative structure freeboard and crest width. We also found that the extent of hazard area due to wave overtopping is significantly reduced by using a permeable structure crown. Findings in this study will enable engineers to establish the extent of hazard zones due to wave overtopping behind coastal structures.  相似文献   

13.
深水细粒底流型沉积物波多分布于陆坡、洋盆等深水洋底。以大澳大利亚湾上部陆坡和康拉德隆起西南坡的波状底形为例,解释了南大洋深水沉积物波的形态特征、分布特点和形成发育机理。以大澳大利亚湾的沉积物波为代表的钙质细粒底流型沉积物波波高约40 m,波长1~2 km,直线型脊线长10 km,平行于等深线,主要由苔藓虫软泥组成,间冰期陆架上苔藓虫丰富,冰期移至陆架外缘和陆坡上部,在流速约16 cm/s的高密度出流作用下于陆坡上部发育成泥质沉积物波。康拉德隆起西南坡的硅质细粒底流型沉积物波由硅藻软泥组成,绕南极流锋面的上升流使得此处的生产力高,硅藻类微体生物丰富,在流速约6 cm/s的底流作用下发育大量沉积物波。2种细粒底流型沉积物波的向陆侧翼的沉积率大于向海侧翼,披覆形成后爬不同相爬升层理,显示沉积物波向上游坡迁移。  相似文献   

14.
A four-year investigation of surf zone sedimentation at Presque Isle, Pennsylvania, was undertaken in preparation for the design of a segmented breakwater system. Sediment transport calculations were based on hind-cast annual wave power statistics and “calibrated” by known accretion rates at the downdrift spit terminus. 30,000 m3 of sediment reaches the peninsula annually from updrift beaches. The transport volume increases downdrift due to shoreface erosion and retreat of the peninsular neck. At the most exposed point on Presque Isle (the lighthouse) the annual transport is 209,000 m3. East of the lighthouse is a zone of net shoreface accretion as the longshore transport rate progressively decreases.

The downdrift variation in sediment supply, combined with increasing refraction and attenuation of the dominant westerly storm waves produce a systematic change in prevailing surf zone morphology. Storms produce a major longshore bar and trough along the exposed peninsular neck. The wave energy during non-storm periods is too low to significantly alter the bar which consequently becomes a permanent feature. The broad shoreface and reduced wave energy level east of the lighthouse produce a morphology characterized by large crescentic outer bars, transverse bars, and megacusps along the beach. At the sheltered and rapidly prograding eastern spit terminus the prevalent beach morphology is that of a ridge and runnel system in front of a megacuspate shore.

The morphodynamic surf zone model developed for oceanic beaches in Australia is used as a basis for interpretation of shoreface morphologic variability at Presque Isle. In spite of interference by major shoreline stabilization structures, and differences between oceanic and lake wave spectra, the nearshore bar field at Presque Isle does closely correspond to the Australian model.  相似文献   


15.
Field measurements of cross-shore currents 0.25 m from the bed were made on two natural beaches under a range of incident wave conditions. The results indicated the presence of a relatively strong, offshore-directed mean current, both within and seaward of the surf zone. Typical velocities within the surf zone were of the order of 0.2–0.3 m/s. This bed return flow, or “undertow”, represents a mass conservation response, returning water seaward that was initially transported onshore in the upper water column, primarily above the trough of the incident waves. The measurements demonstrated that the bed return flow velocity increases with the incident wave height. In addition, the crossshore distribution of the bed return flow is characterised by a mid-surf zone maximum, which exhibits a strong decrease in velocity towards the shoreline and a more gradual decay in the offshore direction. Several bed return flow models based on mass continuity were formulated to predict the cross-shore distribution of the bed return flow under an irregular wave field and were compared with the field data. Best agreement was obtained using shallow water linear wave theory, after including the mass transport associated with unbroken waves. The contribution of the unbroken waves enables net offshore-directed bottom currents to persist outside the region of breaking waves, providing a mechanism, other than rip currents, to transport sediment offshore beyond the surf zone.  相似文献   

16.
《Coastal Engineering》1999,36(1):59-85
Simple theoretical models to determine the equilibrium profile shape under breaking and non-breaking waves are presented. For the case of breaking waves, it is assumed that the seaward transport in the undertow is locally balanced by a net vertical sedimentation, so that no bottom changes occur at equilibrium. The parameterization of the water and sediment flux in the surf zone yields a power curve for the equilibrium profile with a power of 2/3, which is in agreement with previous field investigations on surf zone profile shapes. Three different models were developed to derive the profile shape under non-breaking waves, namely (1) a variational formulation where the wave energy dissipation in the bottom boundary layer is minimized over the part of the profile affected by non-breaking waves, (2) an integration of a small-scale sediment transport formula over a wave period where the slope conditions that yield zero net transport determine equilibrium, and (3) a conceptual formulation of mechanisms for onshore and offshore sediment transport where a balance between the mechanisms defines equilibrium conditions. All three models produced equilibrium profile shapes of power-type with the power typically in the range 0.15–0.30. Comparison with field data supported the results obtained indicating different powers for the equilibrium profile shape under breaking and non-breaking waves.  相似文献   

17.
波流共同作用下废黄河河口水下三角洲地形演变预测模式   总被引:9,自引:0,他引:9  
通过对废黄河河口水下三角洲海域水文、泥沙、沉积和地形的调查分析,对组成水下三角洲-10--15m以深的平坦海床、-5--10m间的水下斜坡、-5m以浅的近岸浅滩三个地貌单元的水动力特征以及在波流和潮流作用下底部泥沙冲刷率的横向分布进行计算分析,并建立了水下三角洲地形横向剖面地形的演变预测模式。结果表明,在三角洲不同地貌单元内。由于所处不同的水动力条件和底部泥沙特性,出现了不同的侵蚀状态,其中在-10--15m以深的平坦海床,除了3m以上的大浪外,水动力作用以强劲的潮流冲刷为主,目前已接近冲刷相对平衡的状态,在-5--10m间的水下斜坡,受波浪和潮流的共同作用,冲刷强度大,地形剖面呈继续平行后退状态;-5m以浅的近岸浅滩,潮流作用相对较弱,以波浪为滩面的剧低为主,水深线不断向岸方向移动、滩宽变窄;0m以上的潮间带滩地,则波浪和潮流作用均较弱,近岸高滩接近相对稳定状态,有利于海岸线的工程防护。  相似文献   

18.
The Santa Cruz coastal terrace fringes much of the northern Monterey Bay region, California. It consists mainly of a regressive sequence of high-energy, barred nearshore marine sediments deposited during the last (Sangamonian) highstand of sea level. This sequence can be sub-divided into several depth-dependent facies on the basis of paleo-current data and vertical sequence of sedimentary structures. These include a lower shoreface facies deposited in 10–16 m water depth, an upper shoreface facies (including both a storm-dominated assemblage and a surf zone assemblage) deposited in 0–10 m water depth, and a foreshore facies deposited in the swash zone, up to 3.5 m above high tide.

The magnitudes of the storm events responsible for depositing these sediments were estimated by calculating paleo-wave heights using a variety of criteria (e.g., critical threshold equations, breaker depths, berm heights). In addition, the climate and paleogeography during the deposition of these sediments were essentially the same as today, allowing the use of present-day wave statistics to estimate the frequency of these storm events. The largest storms formed offshore-flowing currents (e.g., rip, wind-forced, and possibly storm-surge ebb currents) that resulted in the deposition of approximately 30% of the sediments seaward of the surf zone; however, the magnitude and frequency of these events are unknown. The remaining 70% of the sediment beyond the surf zone was deposited in response to smaller storm waves which were, on the average, at least 1.6 m high; such waves presently occur no more than 15% of the time. Sediments deposited during “fairweather” conditions (i.e., the remaining 85% of the time) have a low preservation potential, and are generally not preserved in this facies. In contrast, surf zone sediments were deposited by a variety of processes associated with waves whose maximum offshore heights were probably ≤ 2.2 m; such waves presently occur up to 92% of the time. Sediments within the swash zone were deposited by waves up to 3 m high, the largest of which presently occur approximately 2% of the time.

Most of the sediments were deposited by storms of intermediate magnitude and frequency; different facies, however, appear to preferentially record events of different recurrence intervals. In particular, surf zone sediments were deposited under relatively small storm and post-storm conditions, whereas sediments deposited farther offshore record increasingly larger, less frequent storm events. Relatively rare events (e.g., the 100 or 1000 yr events) do not appear to have significantly affected sedimentation in these nearshore environments.  相似文献   


19.
Coast-hugging surface flood plumes occur on the inner shelf of northern California during the winter season, generating dense, near-bottom suspensions which may attain fluid mud concentrations as particles settle. The period of storm-heightened waves may continue into the flood period, leading to gravity-driven seaward displacement of the bottom suspension; or the wave regime may ameliorate, leaving the suspension to consolidate as a short-lived, inner-shelf flood bed. Such beds tend to be resuspended within days or weeks by subsequent storm events that may recreate the original high concentrations. The sediment is thus dispersed seaward by gravity flows, to be deposited as a muddy flood bed on the central shelf. The locus of deposition of these “high-concentration regimes” is a function of the relative intensities of river discharge and storm wave height. Greater discharge piles thicker storm beds nearer shore, while intense wave regimes allow deposition of the fluid mud further seaward. During events with high values of both parameters, large amount of fluid mud may bypass over the shelf edge. In contrast, “low-concentration regimes” occur during storm periods when there has been no recent flood deposition on the inner shelf. The shelf floor is better consolidated than in the previous case, and the resulting suspended sediment concentrations are lower. As a consequence, low-concentration regimes are winnowing and bypassing regimes, and the beds deposited are thinner and sandier. Algorithms describing deposition by high and low-concentration regimes have been embedded in a probabilistic model. A simulation of a 400-year sequence of beds deposited by winter storms and floods suggests that on the Eel shelf, the Holocene transgressive systems tract consists of back-stepping, seaward-fining event beds, whose timelines (bedding planes) dip more gently than do their gradational facies boundaries. At these longer time scales, flood beds dominate over storm beds.  相似文献   

20.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号