首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The center for Analysis and Prediction of Storms (CAPS) has developed a radar data assimilation system. The system consists of several principal components: (1) a program that quality-controls and remaps (or super-ob) radar data to the analysis grid, (2) a Bratseth analysis method (ADAS), or a 3DVAR method for analyzing all the data except for clouds and precipitation, (3) a cloud and hydrometer analysis package that applies diabetic adjustments to the temperature field, and (4) a non-hydrostatic forecast model named ARPS. In this study, the system is applied to a small cyclone named OGNI, which formed over Bay of Bengal, India during the last week of October 2006. Three experiments are carried out to test the impact of the radar data from Chennai, India. These experiments include (1) using NCEP GFS data to initialize the ARPS model (2) using initial and boundary condition produced from the ADAS and the cloud analysis, (3) using initial and boundary condition produced from the 3DVAR and cloud analysis. The inter-comparison of results reveals that the experiment with the 3DVAR assimilation technique produces more realistic forecast to capture the genesis, structure, and northward movement of the cyclone in the short-range time scale.  相似文献   

3.
An accurate tropical cyclone track and intensity forecast is very important for disaster management. Specialized numerical prediction models have been recently used to provide high-resolution temporal and special forecasts. Hurricane Weather Research and Forecast (HWRF) model is one of the emerging numerical models for tropical cyclone forecasting. This study evaluates the performance of HWRF model during the post monsoon tropical cyclone Nilofar on the north Indian Ocean basin. The evaluation uses the best track data provided by the Indian Meteorological Department (IMD) and the Joint Typhoon Warning Centre (JTWC). Cyclone track, central pressure, and wind speed are covered on this evaluation. Generally, HWRF was able to predict the Nilofar track with track error less than 230 km within the first 66 h of forecast time span. HWRF predicted more intense tropical cyclone. It predicted the lowest central pressure to be 922 hPa while it reached 950 hPa according to IMD and 937 hPa according to JTWC. Wind forecast was better as it predicted maximum wind speed of 122 kt while it reached 110 and 115 kt according to IMD and JTWC, respectively.  相似文献   

4.
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold’s SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold’s and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold’s SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold’s SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold’s SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.  相似文献   

5.
This study aims to present an encouraging example of prediction of super cyclone Gonu over the northern Indian Ocean in 2007. A series of experiments are conducted using the advanced Weather Research and Forecasting model with three-dimensional variational method to assimilate GPS RO refractivity from FORMOSAT-3/COSMIC (hereafter referred as GPS) and radiosonde sounding (GTS) to highlight the relative impact of GPS RO data on model prediction. Significant differences in cyclone track and intensity prediction are exhibited in various experiments with and without cyclic assimilations. Both cold-start (non-cyclic) and hot-start (cyclic) runs with GPS RO data exhibit improvement on later track prediction compared to the control run without data assimilation. GPS experiment outperforms other experiments including GTS in track prediction with the smallest cross-track error. Sensitivity tests were also conducted to identify which GPS RO sounding gives more impact on track prediction. We found that the sounding closest to the cyclone exhibits the largest contribution to track prediction. Assimilation of the RO soundings in the vicinity of Gonu cyclone appears to modify the environmental conditions that result in a later development of a couplet of high and low pressure, leading to a positive impact on track prediction. Sensitivity experiments indicate that the initial information retrieved by GPS data at upper levels that produce colder temperature increments indeed contributes more improvement to track prediction.  相似文献   

6.
This study examines the role of the parameterization of convection, planetary boundary layer (PBL) and explicit moisture processes on tropical cyclone intensification. A high-resolution mesoscale model, National Center for Atmospheric Research (NCAR) model MM5, with two interactive nested domains at resolutions 90 km and 30 km was used to simulate the Orissa Super cyclone, the most intense Indian cyclone of the past century. The initial fields and time-varying boundary variables and sea surface temperatures were taken from the National Centers for Environmental Prediction (NCEP) (FNL) one-degree data set. Three categories of sensitivity experiments were conducted to examine the various schemes of PBL, convection and explicit moisture processes. The results show that the PBL processes play crucial roles in determining the intensity of the cyclone and that the scheme of Mellor-Yamada (MY) produces the strongest cyclone. The combination of the parameterization schemes of MY for planetary boundary layer, Kain-Fritsch2 for convection and Mixed-Phase for explicit moisture produced the best simulation in terms of intensity and track. The simulated cyclone produced a minimum sea level pressure of 930 hPa and a maximum wind of 65 m s−1 as well as all of the characteristics of a mature tropical cyclone with an eye and eye-wall along with a warm core structure. The model-simulated precipitation intensity and distribution were in good agreement with the observations. The ensemble mean of all 12 experiments produced reasonable intensity and the best track.  相似文献   

7.
While qualitative information from meteorological satellites has long been recognized as critical for monitoring weather events such as tropical cyclone activity, quantitative data are required to improve the numerical prediction of these events. In this paper, the sea surface winds from QuikSCAT, cloud motion vectors and water vapor winds from KALPANA-1 are assimilated using three-dimensional variational assimilation technique within Weather Research Forecasting (WRF) modeling system. Further, the sensitivity experiments are also carried out using the available cumulus convective parameterizations in WRF modeling system. The model performance is evaluated using available observations, and both qualitative and quantitative analyses are carried out while analyzing the surface and upper-air characteristics over Mumbai (previously Bombay) and Goa during the occurrence of the tropical cyclone PHYAN at the west coast of Indian subcontinent. The model-predicted surface and upper-air characteristics show improvements in most of the situations with the use of the satellite-derived winds from QuikSCAT and KALPANA-1. Some of the model results are also found to be better in sensitivity experiments using cumulus convection schemes as compared to the CONTROL simulation.  相似文献   

8.
In this paper, impact of Indian Doppler Weather Radar (DWR) data, i.e., reflectivity (Z), radial velocity (Vr) data individually and in combination has been examined for simulation of mesoscale features of a land-falling cyclone with Advance Regional Prediction System (ARPS) Model at 9-km horizontal resolution. The radial velocity and reflectivity observations from DWR station, Chennai (lat. 13.0°N and long. 80.0°E), are assimilated using the ARPS Data Assimilation System (ADAS) and cloud analysis scheme of the model. The case selected for this study is the Bay of Bengal tropical cyclone NISHA of 27–28 November 2008. The study shows that the ARPS model with the assimilation of radial wind and reflectivity observations of DWR, Chennai, could simulate mesoscale characteristics, such as number of cells, spiral rain band structure, location of the center and strengthening of the lower tropospheric winds associated with the land-falling cyclone NISHA. The evolution of 850 hPa wind field super-imposed vorticity reveals that the forecast is improved in terms of the magnitude and direction of lower tropospheric wind, time, and location of cyclone in the experiment when both radial wind and reflectivity observations are used. With the assimilation of both radial wind and reflectivity observations, model could reproduce the rainfall pattern in a more realistic way. The results of this study are found to be very promising toward improving the short-range mesoscale forecasts.  相似文献   

9.
An objective NWP-based cyclone prediction system (CPS) was implemented for the operational cyclone forecasting work over the Indian seas. The method comprises of five forecast components, namely (a) Cyclone Genesis Potential Parameter (GPP), (b) Multi-Model Ensemble (MME) technique for cyclone track prediction, (c) cyclone intensity prediction, (d) rapid intensification, and (e) predicting decaying intensity after the landfall. GPP is derived based on dynamical and thermodynamical parameters from the model output of IMD operational Global Forecast System. The MME technique for the cyclone track prediction is based on multiple linear regression technique. The predictor selected for the MME are forecast latitude and longitude positions of cyclone at 12-hr intervals up to 120 hours forecasts from five NWP models namely, IMD-GFS, IMD-WRF, NCEP-GFS, UKMO, and JMA. A statistical cyclone intensity prediction (SCIP) model for predicting 12 hourly cyclone intensity (up to 72 hours) is developed applying multiple linear regression technique. Various dynamical and thermodynamical parameters as predictors are derived from the model outputs of IMD operational Global Forecast System and these parameters are also used for the prediction of rapid intensification. For forecast of inland wind after the landfall of a cyclone, an empirical technique is developed. This paper briefly describes the forecast system CPS and evaluates the performance skill for two recent cyclones Viyaru (non-intensifying) and Phailin (rapid intensifying), converse in nature in terms of track and intensity formed over Bay of Bengal in 2013. The evaluation of performance shows that the GPP analysis at early stages of development of a low pressure system indicated the potential of the system for further intensification. The 12-hourly track forecast by MME, intensity forecast by SCIP model and rapid intensification forecasts are found to be consistent and very useful to the operational forecasters. The error statistics of the decay model shows that the model was able to predict the decaying intensity after landfall with reasonable accuracy. The performance statistics demonstrates the potential of the system for improving operational cyclone forecast service over the Indian seas.  相似文献   

10.
In this work, the impact of assimilation of conventional and satellite data is studied on the prediction of two cyclonic storms in the Bay of Bengal using the three-dimensional variational data assimilation (3D-VAR) technique. The FANOOS cyclone (December 6?C10, 2005) and the very severe cyclone NARGIS (April 28?CMay 2, 2008) were simulated with a double-nested weather research and forecasting (WRF-ARW) model at a horizontal resolution of 9?km. Three numerical experiments were performed using the WRF model. The back ground error covariance matrix for 3DVAR over the Indian region was generated by running the model for a 30-day period in November 2007. In the control run (CTL), the National Centers for Environmental Prediction (NCEP) global forecast system analysis at 0.5° resolution was used for the initial and boundary conditions. In the second experiment called the VARCON, the conventional surface and upper air observations were used for assimilation. In the third experiment (VARQSCAT), the ocean surface wind vectors from quick scatterometer (QSCAT) were used for assimilation. The CTL and VARCON experiments have produced higher intensity in terms of sea level pressure, winds and vorticity fields but with higher track errors. Assimilation of conventional observations has meager positive impact on the intensity and has led to negative impact on simulated storm tracks. The QSCAT vector winds have given positive impact on the simulations of intensity and track positions of the two storms, the impact is found to be relatively higher for the moderate intense cyclone FANOOS as compared to very severe cyclone NARGIS.  相似文献   

11.
Robust estimates of tropical cyclone risk can be made using large sets of storm events synthesized from historical data or from physics-based algorithms. While storm tracks can be synthesized very rapidly from statistical algorithms or simple dynamical models (such as the beta-and-advection model), estimation of storm intensity by using full-physics models is generally too expensive to be practical. Although purely statistical intensity algorithms are fast, they may not be general enough to encompass the effects of natural or anthropogenic climate change. Here we present a fast, physically motivated intensity algorithm consisting of two coupled ordinary differential equations predicting the evolution of a wind speed and an inner core moisture variable. The algorithm includes the effects of ocean coupling and environmental wind shear but does not explicitly simulate spatial structure, which must be handled parametrically. We evaluate this algorithm by using it to simulate several historical events and by comparing a risk analysis based on it to an existing method for assessing long-term tropical cyclone risk. For simulations based on the recent climate, the two techniques perform comparably well, though the new technique does better with interannual variability in the Atlantic. Compared to the existing method, the new method produces a smaller increase in global tropical cyclone frequency in response to global warming, but a comparable increase in power dissipation.  相似文献   

12.
杨扬  岳智慧郑文 《水文》2005,25(5):40-42
2004年“云娜”台风的监视和预报工作中,在应用常规天气资料的基础上加强了对历史热带气旋资料、天气雷达资料和过去对台风与台风暴雨分析预报研究成果的运用。在台风登陆前、登陆过程中和登陆后三个不同阶段中,应用多种资料进行有针对性的分析判断,并向防台风指挥部门及时提供信息服务,在防台工作中发挥了有效作用。,  相似文献   

13.
Research efforts focused on assessing the potential for changes in tropical cyclone activity in the greenhouse-warmed climate have progressed since the IPCC assessment in 1996. Vulnerability to tropical cyclones becoming more pronounced due to the fastest population growth in tropical coastal regions makes it practically important to explore possible changes in tropical cyclone activity due to global warming. This paper investigates the tropical cyclone activity over whole globe and also individually over six different ocean basins. The parameters like storm frequency, storm duration, maximum intensity attained and location of formation of storm have been examined over the past 30-year period from 1977 to 2006. Of all, the north Atlantic Ocean shows a significant increasing trend in storm frequency and storm days, especially for intense cyclones. Lifetime of intense tropical cyclones over south Indian Ocean has been increased. The intense cyclonic activity over north Atlantic, south-west Pacific, north and south Indian Ocean has been increased in recent 15 years as compared to previous 15 years, whereas in the east and west-north Pacific it is decreased, instead weak cyclone activity has been increased there. Examination of maximum intensity shows that cyclones are becoming more and more intense over the south Indian Ocean with the highest rate. The study of the change in the cyclogenesis events in the recent 15 years shows more increase in the north Atlantic. The Arabian Sea experiences increase in the cyclogenesis in general, whereas Bay of Bengal witnesses decrease in these events. Shrinking of cyclogenesis region occurs in the east-north Pacific and south-west Pacific, whereas expansion occurs in west-north Pacific. The change in cyclogenesis events and their spatial distribution in association with the meteorological parameters like sea surface temperature (SST), vertical wind shear has been studied for Indian Ocean. The increase in SST and decrease in wind shear correspond to increase in the cyclogenesis events and vice versa for north Indian Ocean; however, for south Indian Ocean, it is not one to one.  相似文献   

14.
This study entails the implementation of an experimental real time forecast capability for tropical cyclones over the Bay of Bengal basin of North Indian Ocean. This work is being built on the experience gained from a number of recent studies using the concept of superensemble developed at the Florida State University (FSU). Real time hurricane forecasts are one of the major components of superensemble modeling at FSU. The superensemble approach of training followed by real time forecasts produces the best forecasts for tracks and intensity (up to 5 days) of Atlantic hurricanes and Pacific typhoons. Improvements in track forecasts of about 25–35% compared to current operational forecast models has been noted over the Atlantic Ocean basin. The intensity forecasts for hurricanes are only marginally better than the best models. In this paper, we address tropical cyclone forecasts over the Bay of Bengal for the years 1996–2000. The main result from this study is that the position and intensity errors for tropical cyclone forecasts over the Bay of Bengal from the multimodel superensemble are generally less than those of all of the participating models during 1- to 3-day forecasts. Some of the major tropical cyclones, such as the November 1996 Andhra Pradesh cyclone and October 1999 Orissa super cyclone were well handled by this superensemble approach. A conclusion from this study is that the proposed approach may be a viable way to construct improved forecasts of Bay of Bengal tropical cyclone positions and intensity.  相似文献   

15.
The aim of the present study is to understand the impact of oceanic heat potential in relation to the intensity of tropical cyclones (TC) in the Bay of Bengal during the pre-monsoon (April–May) and post-monsoon (October–November) cyclones for the period 2006–2010. To accomplish this, the two-layer gravity model (TLGM) is employed to estimate daily tropical cyclone heat potential (TCHP) utilizing satellite altimeter data, satellite sea surface temperature (SST), and a high-resolution comprehensive ocean atlas developed for Indian Ocean, subsequently validated with in situ ARGO profiles. Accumulated TCHP (ATCHP) is estimated from genesis to the maximum intensity of cyclone in terms of minimum central pressure along their track of all the cyclones for the study period using TLGM generated TCHP and six-hourly National Centre for Environmental Prediction Climate Forecast System Reanalysis data. Similarly, accumulated sea surface heat content (ASSHC) is estimated using satellite SST. In this study, the relationship between ATCHP and ASSHC with the central pressure (CP) which is a function of TC intensity is developed. Results reveal a distinct relationship between ATCHP and CP during both the seasons. Interestingly, it is seen that requirement of higher ATCHP during pre-monsoon cyclones is required to attain higher intensity compared to post-monsoon cyclones. It is mainly attributed to the presence of thick barrier layer (BL) resulting in higher enthalpy fluxes during post-monsoon period, where as such BL is non-existent during pre-monsoon period.  相似文献   

16.
Wahiduzzaman  Md  Luo  Jing-Jia 《Natural Hazards》2022,111(2):1801-1811
Natural Hazards - This study investigates the contribution of Boreal Summer Intraseasonal Oscillation (BSISO) to the tropical cyclone (TC) activity over the North Indian Ocean (NIO) and assesses...  相似文献   

17.
Natural Hazards - The impacts of El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on tropical cyclone (TC) activity (intensity, frequency, genesis location, track and average...  相似文献   

18.
Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port Blair islands. Algorithm-3 of Schlussel and Emery (1990) performed best. On the basis of this algorithm, distribution of integrated water vapour is determined during the monsoon depression (22nd–27th July, 1992) that formed over the Bay of Bengal.  相似文献   

19.
The SSM/I microwave Brightness Temperatures (TB's) in the frequency domains of 85 and 19 GHz gathered from the Defense Meteorological Satellite Program (DMSP)-F8 satellite form the basis of this research. These data are related to 27 map times of 13 typhoons of the 1987 season, one typhoon of the 1988 season and one cyclone in the Indian Ocean in 1987. The TB's disclosed certain characteristics of typhoons unavailable through conventional infrared (IR) imagery means.Brightness Temperatures were chosen to delineate the typhoon characteristics rather than the derived geophysical parameters such as rainfall or surface winds because the TB's have better resolution. The footprint size of the 85 GHz TB is 15 × 13 km while a derived (through algorithms based on regression) quantity such as rainfall has a much higher footprint size. The relatively large footprint size of rainfall results, because of using the 19 GHz channel which has a larger footprint size of 69 × 43 km.The mean 85 GHz (vertically polarized, V) TB's of a moving typhoon, particularly those on the left side within 55 km of the center, appear to exhibit a practically usable correlation with the 24 hour intensity. This finding is consistent with some observational studies, which show higher rain rates to occur within the asymmetric eyewalls of developing tropical cyclones. Further stratification of the sample in terms of direction of movement improved the correlation.The TB anomalies were defined in terms of the TB differences between two sections of a typhoon (e.g., between right and left sides or between inner and outer areas). The development of this sort of anomalies represents a relative growth of deep convection close to the center. If there is a good growth, the cyclone is likely to intensify within a short period of time. The anomalies also showed good correlation with the 24-h intensity. The intensity change (24-h intensity – Current Intensity) was also correlated with the 85 GHz V mean TB values, as well as, with 85 GHz V TB anomalies as defined above. Significant correlations ensued. Since these preliminary results are promising, further experimentation with a larger sample is suggested. Nevertheless, the scientist interested in natural hazards would find the current results valuable in the problem of typhoon intensification.  相似文献   

20.
In the recent times, several advanced numerical models are utilized for the prediction of the intensity, track and landfall time of a cyclone. Still there are number of issues concerning their prediction and the limitation of numerical models in addressing those issues. The most pertinent question is how intensive a cyclone can become before it makes a landfall and where the cyclone moves under the ambient large-scale flow. In this paper, detailed study has been carried out using Weather Research Forecast model with two boundary schemes to address the above question by considering a recent tropical cyclone in Bay of Bengal region of North Indian Ocean. In addition, the impact of the surface drag effect on the low-level winds and the intensity of the cyclone are also studied. The result reveals that large differences are noted in the ocean surface fluxes between YSU and MYJ with MYJ producing relatively higher fluxes than YSU. It is found that the YSU scheme produced a better simulation for the THANE cyclone in terms of winds, pressure distribution and cloud fractions. Comparison with available observations indicated the characteristics of horizontal divergence, vorticity and vector track positions produced by YSU experiment are more realistic than with MYJ and other experiments. However, when the drag coefficient is changed as 0.5 or 2.0 from the default values, appreciable changes in the surface fluxes are not noticed. A maximum precipitation is reported in YSU as compared to the MYJ PBL scheme for the tropical cyclone THANE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号