首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Since the devastating southern Africa drought of 1991/92 awareness has grown of the potential to better manage climate variability in the region through seasonal climate forecasting and monitoring of El Niño and the Southern Oscillation (ENSO). While other factors besides ENSO affect southern Africa's climate, and climate forecasting for the region is not based exclusively on ENSO, a major El Niño beginning in 1997 captured the attention of policy-makers and the public. Awareness of drought risks associated with the 1997/98 event was greater than during previous El Niños in 1991/92 and 1994/95. Mitigation and planning efforts also began earlier, with drought early warnings widely available and being taken seriously prior to the 1997/98 agricultural season. Actions taken include issuance of guidance to the public, on-going monitoring and preparedness efforts including the development of national preparedness plans in some countries, pre-positioning of food stocks, donor coordination, and greater reliance on the private-sector for meeting regional food needs. Although 1998 regional crop production was slightly below average, a major drought did not materialize. Nonetheless the experience is likely to ultimately strengthen capacity within the region to manage climate variability over the long term.  相似文献   

3.
2005年10月16~20日在美国弗吉尼亚州埃尔利中心召开了年代际气候变率研讨会。这个会议由美国CLIVAR/WCRP/IPCC办公室联合NOAA、NASA、NSF等单位共同举办。与会代表共约40位科学家,多数来自美国,少数代表来自德国、英国、中国和日本。会议由美国地球系统变化研究中心(CRCES)承办。  相似文献   

4.
5.
6.
The adaptation of agriculture and forestry to the climate of the twenty-first century supposes that research projects will be conducted cooperatively between meteorologists, agronomists, soil scientists, hydrologists, and modellers. To prepare for it, it is appropriate first of all to study the variations in the climate of the past using extensive, homogenised series of meteorological or phenological data. General circulation models constitute the basic tool in order to predict future changes in climate. They will be improved, and the regionalisation techniques used for downscaling climate predictions will also be made more efficient. Crop simulation models using input data from the general circulation models applied at the regional level ought to be the favoured tools to allow the extrapolation of the major trends on yield, consumption of water, fertilisers, pesticides, the environment and rural development. For this, they have to be validated according to the available agronomical data, particularly the available phenological series on cultivated crops. In addition, climate change would have impact on crop diseases and parasites, as well as on weeds. Very few studies have been carried out in this field. It is also necessary to quantify in a more accurate way the stocks and fluxes of carbon in large forest ecosystems, simulate their future, and assess the vulnerability of the various forest species to a change in climate. This is all the more important in that some propagate species choices must be made in the course of the next ten years in plantations which will experience changed climate. More broadly speaking, we shall have not only to try hard to research new agricultural and forestry practices which will reduce greenhouse gas emissions or promote the storage of carbon, but it will also be indispensable to prepare the adaptation of numerous rural communities for the climate change (with special reference to least developed countries in tropical areas, where malnutrition is a common threat). This can be accomplished with a series of new environmental management practices suited to the new climatic order.  相似文献   

7.
Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors.  相似文献   

8.
The potential impact of climate variability and climate change on agricultural production in the United States and Canada varies generally by latitude. Largest reductions are projected in southern crop areas due to increased temperatures and reduced water availability. A longer growing season and projected increases in CO2 may enhance crop yields in northern growing areas. Major factors in these scenarios analyzes are increased drought tendencies and more extreme weather events, both of which are detrimental to agriculture. Increasing competition for water between agriculture and non-agricultural users also focuses attention on water management issues. Agriculture also has impact on the greenhouse gas balance. Forests and soils are natural sinks for CO2. Removal of forests and changes in land use, associated with the conversion from rural to urban domains, alters these natural sinks. Agricultural livestock and rice cultivation are leading contributors to methane emission into the atmosphere. The application of fertilizers is also a significant contributor to nitrous oxide emission into the atmosphere. Thus, efficient management strategies in agriculture can play an important role in managing the sources and sinks of greenhouse gases. Forest and land management can be effective tools in mitigating the greenhouse effect.  相似文献   

9.
10.
农业对气候变化的脆弱性   总被引:5,自引:0,他引:5       下载免费PDF全文
随着对气候变化研究的不断深入,气候变化脆弱性问题也得到了更多的关注。相对于水资源、森林等其他自然生态系统,农业受气候变化的影响最大,科学地评价其对气候变化的脆弱性,对于制定合理有效的适应对策具有重要意义。从气候变化脆弱性与农业对气候变化脆弱性的定义、研究内容和评价方法等角度综述了研究进展,在此基础上分析了目前该领域存在的问题,包括情景应用、方法和不确定性等方面,并展望了未来脆弱性评价的发展方向。  相似文献   

11.
2006年度干旱气候变化与减灾学术研讨会技术总结   总被引:4,自引:0,他引:4  
引言2007年1月16-17日,由中国气象局兰州干旱气象研究所、甘肃省干旱气候变化与减灾重点实验室、中国气象局干旱气候变化与减灾重点开放实验室和中国气象学会干旱气象学委员会主办的“2006年度干旱气候变化与减灾学术研讨会”在兰州召开。来自中国科学院青藏高原研究所、寒区旱  相似文献   

12.
An Anatomy of Adaptation to Climate Change and Variability   总被引:29,自引:7,他引:29  
Adaptation to climate variability and change is important both for impact assessment (to estimate adaptations which are likely to occur) and for policy development (to advise on or prescribe adaptations). This paper proposes an "anatomy of adaptation" to systematically specify and differentiate adaptations, based upon three questions: (i) adapt to what? (ii) who or what adapts? and (iii) how does adaptation occur? Climatic stimuli include changes in long-term mean conditions and variability about means, both current and future, and including extremes. Adaptation depends fundamentally on the characteristics of the system of interest, including its sensitivities and vulnerabilities. The nature of adaptation processes and forms can be distinguished by numerous attributes including timing, purposefulness, and effect. The paper notes the contribution of conceptual and numerical models and empirical studies to the understanding of adaptation, and outlines approaches to the normative evaluation of adaptation measures and strategies.  相似文献   

13.
Although there are different results from different studies, most assessments indicate that climate variability would have negative effects on agriculture and forestry in the humid and sub-humid tropics. Cereal crop yields would decrease generally with even minimal increases in temperature. For commercial crops, extreme events such as cyclones, droughts and floods lead to larger damages than only changes of mean climate. Impacts of climate variability on livestock mainly include two aspects; impacts on animals such as increase of heat and disease stress-related death, and impacts on pasture. As to forestry, climate variability would have negative as well as some positive impacts on forests of humid and sub-humid tropics. However, in most tropical regions, the impacts of human activities such as deforestation will be more important than climate variability and climate change in determining natural forest cover.  相似文献   

14.
Adaptation in Canadian Agriculture to Climatic Variability and Change   总被引:3,自引:0,他引:3  
The effects of climatic variability and change on Canadian agriculture have become an important research field since the early 1980s. In this paper, we seek to synthesize this research, focusing on agricultural adaptation, a purposeful proactive or reactive response to changes associated with climate, and influenced by many factors. A distinctive feature of methods used in research on adaptation in Canadian agriculture is the focus on the important role of human agency. Many individual farmers perceive they are well adapted to climate, because of their extensive 'technological' tool-kit, giving them confidence in dealing with climatic change. In many regions, little concern is expressed over climatic change, except where there are particular types of climatic vulnerability. Farmers respond to biophysical factors, including climate, as they interact with a complex of human factors. Several of these, notably institutional and political ones, have tended to diminish the farm-level risks stemming from climatic variability and change, but may well increase the long term vulnerability of Canadian agriculture. Notwithstanding the technological and management adaptation measures available to producers, Canadian agriculture remains vulnerable to climatic variability and to climate change.  相似文献   

15.
Sue Walker 《Climatic change》2005,70(1-2):311-318
Agricultural meteorologists are concerned with many operational aspects of the effects of climate on crop production, livestock, and natural resource management. For them to continue to make a contribution to the economy of a country they must continually sharpen their skills and remain updated on the latest available information. Training should include a variety of skills, including transferable skills (e.g. communication, numeracy), professional skills (including cognitive skills) and information technology skills. Problem-based learning can be used to promote critical thinking, decision making and analytical skills. More use should be made of computer-aided learning for agricultural meteorologists’ in-service training. In particular, the Internet or CDs could be used to disseminate specific recently developed techniques and applications to improve the understanding of the variability in climate and its effect on agricultural production and natural resource management. Examples that can address the vulnerability of farmers include crop–climate matching, the use of indices, crop modelling and risk assessment together with seasonal outlooks. A strategy needs to be formulated to address these needs and implement changes in the education and training of agricultural meteorologists. These training needs must be constantly updated to meet the changing demands of new technology to cope with climate change and climate variability.  相似文献   

16.
Vulnerability of the Asian Typical Steppe to Grazing and Climate Change   总被引:1,自引:0,他引:1  
The vulnerability of grassland vegetation in Inner Mongolia to climate change and grazing was examined using an ecosystem model. Grazing is an important form of land use in this region, yet there are uncertainties as to how it will be affected by climate change. A sensitivity analysis was conducted to study the effects of increased minimum and maximum temperatures, ambient and elevated CO2, increased or decreased precipitation, and grazing on vegetation production. Simulations showed that herbaceous above ground net primary production was most sensitive to changes in precipitation levels. Combinations of increased precipitation, temperature, and CO2 had synergistic effects on herbaceous production, however drastic increases in these climate scenarios left the system vulnerable to shifts from herbaceous to shrub-dominated vegetation when grazed. Reduced precipitation had a negative effect on vegetation growth rates, thus herbaceous growth was not sustainable with moderate grazing. Shifts in temporal biomass patterns due to changed climate have potentially significant implications for grazing management, which will need to be altered under changing climate to maintain system stability.  相似文献   

17.
We discuss approaches to the assessment of vulnerability to climatevariability and change andattempt to clarify the relationship between the concepts of vulnerability andadaptation. In searchof a robust, policy-relevant framework, we define vulnerability in terms ofthe capacity ofindividuals and social groups to respond to, that is, to cope with, recoverfrom or adapt to, anyexternal stress placed on their livelihoods and well-being. The approach thatwe develop placesthe social and economic well-being of society at the centre of the analysis,focussing on thesocio-economic and institutional constraints that limit the capacity torespond. From thisperspective, the vulnerability or security of any group is determined byresource availability andby the entitlement of individuals and groups to call on these resources. Weillustrate theapplication of this approach through the results of field research in coastalVietnam, highlightingshifting patterns of vulnerability to tropical storm impacts at the household-and community-levelin response to the current process of economic renovation and drawingconclusions concerningmeans of supporting the adaptive response to climate stress. Four prioritiesfor action areidentified that would improve the situation of the most exposed members ofmany communities:poverty reduction; risk-spreading through income diversification; respectingcommon propertymanagement rights; and promoting collective security. A sustainable response,we argue, mustalso address the underlying causes of social vulnerability, including theinequitable distributionof resources.  相似文献   

18.
Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking   总被引:25,自引:8,他引:25  
Vulnerability is an emerging concept for climate science and policy. Over the past decade, efforts to assess vulnerability to climate change triggered a process of theory development and assessment practice, which is reflected in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper reviews the historical development of the conceptual ideas underpinning assessments of vulnerability to climate change. We distinguish climate impact assessment, first- and second-generation vulnerability assessment, and adaptation policy assessment. The different generations of assessments are described by means of a conceptual framework that defines key concepts of the assessment and their analytical relationships. The purpose of this conceptual framework is two-fold: first, to present a consistent visual glossary of the main concepts underlying the IPCC approach to vulnerability and its assessment; second, to show the evolution of vulnerability assessments. This evolution is characterized by the progressive inclusion of non-climatic determinants of vulnerability to climate change, including adaptive capacity, and the shift from estimating expected damages to attempting to reduce them. We hope that this paper improves the understanding of the main approaches to climate change vulnerability assessment and their evolution, not only within the climate change community but also among researchers from other scientific communities, who are sometimes puzzled by the unfamiliar use of technical terms in the context of climate change.  相似文献   

19.
Gary Yohe 《Climatic change》2000,46(3):371-390
Three types of adaptation can influence significantly a system's prospective longevity in the face of climate change. The ability to cope with variation in its current environment can help a system adapt to changes over the longer term. The ability to take advantage of beneficial changes that might coincide with potentially harmful ones can play an even larger role; and focusing attention on maximizing a system's sustainable lifetime can highlight the potential for extending that time horizon and increasing the likelihood that an alternative structure might be created. A specific economic approach to adaptation demonstrates that research can serve two functions in this regard. Research can play an important role in diminishing future harm suggested by standard impact analyses by focusing attention on systems where adaptation can buy the most time. It can help societies learn how to become more robust under current conditions; and it can lead them to explore mechanisms by which they can exploit potentially beneficial change. Research can also play a critical role in assessing the need for mitigating long-term change by focusing attention on systems where potential adaptation in both the short and long runs is so limited that it is almost impossible to buy any time at all. In these areas, switching to an alternative system or investing in the protection of existing ones are the last lines of defense. Real "windows" of tolerable climate change can be defined only by working in areas where these sorts of adaptive alternatives cannot be uncovered.  相似文献   

20.
Tropical cyclones(TCs) are one of the most destructive natural phenomena on Earth in terms of human-life and economic losses. It is currently a matter of prodigious public and scientific interest how TC activity has changed and will change in a warming climate. This special issue focuses on a challenging subject raised in the Intergovernmental Panel on Climate Change(IPCC) report and numerous research papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号