首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The singular behavior of supercritical fluids was found more than one hundred years ago. In 1879, English scientists Hannay and Hogarth[1] firstly studied the properties of supercritical fluids collectively and discovered that ethanol and carbon tetrachlo…  相似文献   

2.
Soil H2 and CO2 surveys were carried out along seven active faults and around the aftershock region of the 2000 Tottori-ken Seibu earthquake in Japan. Diffuse CO2 effluxes were also measured along one fault and around the 2000 aftershock region. The results show highly variable H2 concentration in space and time and it seems that the maximum H2 concentration at each active fault correlates with fault activity as exemplified by the time of the latest big earthquakes. Even though observed H2 concentrations in four faults were markedly lower than those collected previously in the latter half of the 1970s, it is evident that the higher H2 concentrations in this study are due to the addition of the fault gases. Comparing the chemical composition of trapped gases (H2: 5–20% and CO2/H2: 0.5–12) in fractured rocks of drill cores bored at the Nojima fault, a soil gas sample with the highest H2 concentration showed large amounts of the trapped fault gas, diluted with atmospheric component. The profile experiment across a fracture zone at the Yamasaki fault showed higher H2 concentrations and lower CO2/H2 ratios as was observed in soil gas from the fracture zone. A few days after the 2000 Tottori-kei Seibu earthquake, no CO2 effluxes related to the occurrence of earthquakes were observed at the aftershock region. However, only above the epicenter zone, relatively high H2 concentrations in soil gases were observed.  相似文献   

3.
The solubility of gold and quartz in 0.01, 0.10 and 1. 00 mol/kg NaCl solutions with various pH was determined in the presence of the NNO oxygen buffer at 300°C and 50 MPa using a flexible gold cell hydrothermal apparatus. The Au speciation in the SiO2-NaCI-H2O system was inferred and the equilibrium constants for the following dissolution reactions were obtained: Au+H2O = AuOH0+1/2H2, logK(AuOH0) = -7.92 ± 0.25; Au+Cl-+H2O = AuOHCl-+1/2H2, logK(AuOHCl-) = - 7. 56 ± 0.65. The present study suggests that Au as AUOH0 and AuOHCl- is basically transported in ore-forming solutions under geologically realistic conditions of acidity, chloride molality and oxygen fugacity. The reason for the common association of Au with SiO2 in hydrothermal gold deposits is discussed. Project supported hy the National Natural Science Foundation of China.  相似文献   

4.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

5.
The characteristics of dayside auroras during the large (16–24 nT) positive values of the IMF B z component, observed on January 14, 1988, during the interaction between the Earth’s magnetosphere and the body of the interplanetary magnetic cloud, have been studied based on the optical observations on Heiss Island. A wide band of diffuse red luminosity with an intensity of 1–2 kilorayleigh (kR) was observed during 6 h in the interval 1030–1630 MLT at latitudes higher than 75° CGL. Rayed auroral arcs, the brightness of which in the 557.7 nm emission sharply increased to 3–7 kR in the postnoon sector immediately after the polarity reversal of the IMF B y component from positive to negative, were continuously registered within the band. Bright auroral arcs were observed at the equatorward edge of red luminosity. It has been found out that the red auroral intensity increases and the band equatorward boundary shifts to lower latitudes with increasing solar wind dynamic pressure. However, a direct proportional dependence of the variations in the auroral features on the dynamic pressure variations has not been found. It has been concluded that the source of bright discrete auroras is located in the region of the low-latitude boundary layer (LLBL) on closed geomagnetic field lines. The estimated LLBL thickness is ∼3 R e . It has been concluded that the intensity of the dayside red band depends on the solar wind plasma density, whereas the position of the position equatorward boundary depends on the dynamic pressure value and its variations.  相似文献   

6.
Diffuse CO<Subscript>2</Subscript> degassing at Vesuvio,Italy   总被引:1,自引:0,他引:1  
At Vesuvio, a significant fraction of the rising hydrothermal–volcanic fluids is subjected to a condensation and separation process producing a CO2–rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic–hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d–1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d–1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d–1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.Editorial responsibility: H. Shinohara  相似文献   

7.
The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri forest in the Gongga Mountain from May 1998 to September 1999. The results indicate the following: (i) The forest soil serves as the source of atmospheric N2O at the three measurement sites, while the fluxes of CH4 are all negative, and soil is the sink of atmospheric CH4. The comparative relations of N2O emissions between the three sites are expressed as primeval Abies fabri forest < clear-cut areas < succession Abies fabri forest, and those of CH4 consumption fluxes are primeval Abies fabri forest < succession Abies fabri forest < clear-cut areas, (ii) Significant seasonal variations of N2O emission at various sites were observed, and two emission peaks of N2O occurr during summer (July—August) and spring (February—March), whereas N2O emission is relatively low in winter and spring (mid March—April). Seasonal variations of CH4 consumption at each measurement site fluctuate drastically with unclear regularities. Generally, CH4 consumption fluxes of succession Abies fabri forest and clear-cut areas are higher from mid May to late July but lower in the rest of sampling time, while the CH4 flux keeps a relatively high value even up to September in primeval Abies fabri forest. In contrast to primeval Abies fabri forest, the CH4 absorbabilities of succession Abies fabri forest and clear-cut areas of mid-aged Abies fabri forest are weaker. Particularly, the absorbability of the clear-cut areas is even weaker as compared with the other two sites, for the deforestation reduces the soil absorbability of atmospheric CH4. (iii) Evident diurnal variation regularity exists in the N2O emissions of primeval Abies fabri forest, and there is a statistic positive correlation between the fluxes of N2O and air temperature (R=0.95, n=11, α· 0.01), and also the soil temperature of 5-cm layer (R=0.81, n=11, α> 0.01), whereas the CH4 diurnal variation regularities are unclear and have no significant correlation with the soil temperature of 5-cm layer and air temperature.  相似文献   

8.
The complex seismotectonic studies of the pleistoseist area of the Ilin-Tas earthquake (Ms = 6.9), one of the strongest seismic events ever recorded by the regional seismic network in northeastern Russia, are carried out. The structural tectonic position, morphotectonic features of present-day topography, active faults, and types of Cenozoic deformations of the epicentral zone are analyzed. The data of the instrumental observations are summarized, and the manifestations of the strong seismic events in the Yana–Indigirka segment of the Cherskii seismotectonic zone are considered. The explanation is suggested for the dynamical tectonic setting responsible for the Andrei-Tas seismic maximum. This setting is created by the influence of the Kolyma–Omolon indenter, which intrudes into the Cherskii seismotectonic zone from the region of the North American lithospheric plate and forms the main seismogenic structures of the Yana–Indigirka segment in the frontal zone (the Ilin-Tas anticlinorium). The highest seismic potential is noted in the Andrei- Tas block—the focus of the main tectonic impacts from the Kolyma–Omolon superterrane. The general trend of this block coincides with the orientation of the major axis of isoseismal ellipses (azimuth 50°–85°), which were determined from the observations of macroseismic effects on the ground after the Uyandina (Ms = 5.6), Andrei-Tas (Ms = 6.1), and Ilin-Tas (Ms = 6.9) earthquakes.  相似文献   

9.
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain M S=8.1 (M W=7.8) earthquake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The second stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position.  相似文献   

10.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

11.
The seasonal cycle of the main lunar tidal constituent M 2 is studied globally by an analysis of a high-resolution ocean circulation and tide model (STORMTIDE) simulation, of 19 years of satellite altimeter data, and of multiyear tide-gauge records. The barotropic seasonal tidal variability is dominant in coastal and polar regions with relative changes of the tidal amplitude of 5–10 %. A comparison with the observations shows that the ocean circulation and tide model captures the seasonal pattern of the M 2 tide reasonably well. There are two main processes leading to the seasonal variability in the barotropic tide: First, seasonal changes in stratification on the continental shelf affect the vertical profile of eddy viscosity and, in turn, the vertical current profile. Second, the frictional effect between sea-ice and the surface ocean layer leads to seasonally varying tidal transport. We estimate from the model simulation that the M 2 tidal energy dissipation at the sea surface varies seasonally in the Arctic (ocean regions north of 60°N) between 2 and 34 GW, whereas in the Southern Ocean, it varies between 0.5 and 2 GW. The M 2 internal tide is mainly affected by stratification, and the induced modified phase speed of the internal waves leads to amplitude differences in the surface tide signal of 0.005–0.0150 m. The seasonal signals of the M 2 surface tide are large compared to the accuracy demands of satellite altimetry and gravity observations and emphasize the importance to consider seasonal tidal variability in the correction processes of satellite data.  相似文献   

12.
The great Kunlun earthquake occurred on Nov. 14, 2001 in Qinghai Province, China. Five large aftershocks with magnitude larger than 5.0 occurred near the Kunlun fault after main shock. Calculations of the change in Coulomb failure stress reveal that 4 of 5 large aftershocks occurred in areas with Δσf>0 (10?2–10?1 MPa) and one aftershock occurred in an area with Δσf=?0.56 MPa. It is concluded that the permanent fault displacement due to the main shock is the main cause of activity of large aftershocks, but not the whole cause.  相似文献   

13.
A detailed analysis of published data on the N2, Ar, and He content and Ar and He isotopic composition of fumarolic fluids from Vulcano crater (south Italy) supports a model with two endmembers comprising magmatic and hydrothermal fluids with correspondingly low and high H2O content. The magmatic component with the highest 3He/4He and highest absolute concentrations of N2, Ar, and He also has the lowest N2/Ar and N2/He ratios (∼300 and ∼500, respectively). In contrast, the hydrothermal endmember, with the lower 3He/4He and lower absolute N2, Ar, and He abundances, has high N2/Ar (∼1,000) and high N2/He (>3,000) ratios. The hydrothermal component is also characterized by the highest 40Ar/36Ar ratios (>1,000) and is proposed to be the main carrier of metamorphic gases from the arc crust.  相似文献   

14.
On the basis of Parry’s method (1986), an improved method was established to determine the molar volume (Vm) and compositions (X) of the NaCl-H2O-CO2 (NHC) system inclusion. To use this method, the determination of Vm-X only requires three microthermometric data of a NHC inclusion: partial homog-enization temperature (Th ,CO2), salinity (S) and total homogenization temperature (Th). Theoretically, four associated equations are needed containing four unknown parameters: X CO2, XNaCl, Vm and F (volume fraction of CO2 phase in total inclusion when occurring partial homogenization). When they are released, the Vm-X are determined. The former three equations, only correlated with Th ,CO2, S and F, have simplified expressions:XCO2=f1(Th,CO2,S,F),XNaCl=f2(Th,CO2,S,F),Vm=f3(Th,CO2,S,F). The last one is the thermodynamic relationship of X CO2, XNaCl, Vm and Th:f4(XCO2,XNaCl,Vm,Th)=0.Since the above four associated equations are complicated, it is necessary to adopt iterative technique to release them. The technique can be described by:(i) Freely input a F value (0≤F≤1),with Th ,CO2 and S, into the former three equations. As a result,X CO 2,XNaCl and the molar volume value recorded as Vm1 are derived. (ii) Input the X CO2 and XNaCl gotten in the step above into the last equation, and another molar volume value recorded as Vm2 is determined. (iii) If Vm1 is unequal to Vm2, the calculation will be restarted from “(i)”. The iteration is completed until Vm1 is equal to Vm2, which means that the four associated equations are released. Compared to Parry’s (1986) solution method, the improved method is more convenient to use, as well as more accurate to determine X CO 2. It is available for a NHC inlusion whose partial homogenization temperature is higher than clatherate melting temperature and there are no solid salt crystals in the inclusion at parital homogenization.  相似文献   

15.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

16.
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LMI toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 El Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.  相似文献   

17.
Atmospheric SO2 has a significant impact on the urban environment and global climate. Band Residual Difference Algorithm (BRD) and Differential Optical Absorption Spectroscopy (DOAS) were used respectively by NASA and ESA science team to derive SO2 columns from satellite observations, but there are few studies on the comparison and validation of BRD and DOAS SO2 retrievals under the same observation conditions. In this study, the radiative transfer model SCIATRAN was firstly used to validate the accuracies of BRD and DOAS SO2 retrievals, and analyse the uncertainty of SO2 retrieval caused by band selection, O3 absorption, aerosol, surface reflectance, solar and viewing zenith angle. Finally, BRD and DOAS algorithms were applied to the same radiances from satellite observations, and comparisons of BRD and DOAS SO2 retrievals were conducted over volcanic eruption and North China. Results show that, for the case with low SO2 columns, BRD SO2 retrievals have higher retrieval accuracy than DOAS, but typical seasonal variation with high SO2 column in winter and low in summer can be more clearly discernible in DOAS SO2 retrievals than BRD from satellite observations. For the case with high SO2 columns, the differences between BRD (310.8–314.4 nm) and DOAS (315–327 nm) retrievals are large, and the value and accuracy of BRD (310.8–314.4 nm) SO2 retrievals are lower than those of DOAS (315–327 nm) retrievals. Compared with the SO2 inputs in forward model, both BRD (310.8–314.4 nm) and DOAS (315–327 nm) SO2 retrievals are underestimated for the case with high SO2 columns. The selection of wavelength range can significantly affect the accuracy of SO2 retrieval. The error of BRD SO2 retrieval from 310.8–314.4 nm is lower than other bands in the ultraviolet spectral region (306–327 nm). The increase of wavelength in the ultraviolet spectral region 306–330 nm can reduce the underestimation of DOAS SO2 retrievals in the case of high SO2 column, but slight overestimation of SO2 retrieval is found from the 315–327 nm range in the case of low SO2 column. The values of BRD and DOAS SO2 retrieval decrease with atmospheric O3 column and aerosol optical depth increasing, but increase with surface reflectance increasing. Large solar zenith angle and viewing zenith angle can introduce more errors to the BRD and DOAS SO2 retrievals. This study is important for the improvement of retrieval algorithm and the application of SO2 products from satellite observations.  相似文献   

18.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

19.
High‐grade mylonites occur in the Takahama metamorphic rocks, a member of the high‐pressure low‐temperature type Nagasaki Metamorphic Rocks, western Kyushu, Japan. Mafic layers within the mylonites retain reaction microstructures consisting of margarite aggregates armoring both corundum and kyanite. The following retrograde reaction well accounts for the microstructures in the CaO–Al2O3–SiO2–H2O system: 3Al2O3 + 2Al2SiO5 + 2Ca2Al3Si3O12(OH) + 3H2O = 2Ca2Al8Si4O20(OH)4 (corundum + kyanite + clinozoisite + fluid = margarite). Mass balance analyses and chemical potential modeling reveal that the chemical potential gradients present between kyanite and corundum have likely driven the transport of the CaO and SiO2 components. The mylonitization is considered to take place chronologically after peak metamorphism and before the above reaction, based on the following features: approximately constant thickness of the margarite aggregates, random orientation of margarite, and local modification of garnet composition at a boudin neck that formed during mylonitization. The estimated peak temperature of 640°C and the pressure–temperature conditions of the above reaction indicate that the mylonitization took place at temperature between 530 and 640°C at pressures higher than 1.2 GPa, approximately equivalent to the depth of the lower crust of island arcs.  相似文献   

20.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号