首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
 The mechanisms responsible for the mean state and the seasonal and interannual variations of the coupled tropical Pacific-global atmosphere system are investigated by analyzing a thirty year simulation, where the LMD global atmospheric model and the LODYC tropical Pacific model are coupled using the delocalized physics method. No flux correction is needed over the tropical region. The coupled model reaches its regime state roughly after one year of integration in spite of the fact that the ocean is initialized from rest. Departures from the mean state are characterized by oscillations with dominant periodicites at annual, biennial and quadriennial time scales. In our model, equatorial sea surface temperature and wind stress fluctuations evolved in phase. In the Central Pacific during boreal autumn, the sea surface temperature is cold, the wind stress is strong, and the Inter Tropical Convergence Zone (ITCZ) is shifted northwards. The northward shift of the ITCZ enhances atmospheric and oceanic subsidence between the equator and the latitude of organized convention. In turn, the stronger oceanic subsidence reinforces equatorward convergence of water masses at the thermocline depth which, being not balanced by equatorial upwelling, deepens the equatorial thermocline. An equivalent view is that the deepening of the thermocline proceeds from the weakening of the meridional draining of near-surface equatorial waters. The inverse picture prevails during spring, when the equatorial sea surface temperatures are warm. Thus temperature anomalies tend to appear at the thermocline level, in phase opposition to the surface conditions. These subsurface temperature fluctuations propagate from the Central Pacific eastwards along the thermocline; when reaching the surface in the Eastern Pacific, they trigger the reversal of sea surface temperature anomalies. The whole oscillation is synchronized by the apparent meridional motion of the sun, through the seasonal oscillation of the ITCZ. This possible mechanism is partly supported by the observed seasonal reversal of vorticity between the equator and the ITCZ, and by observational evidence of eastward propagating subsurface temperature anomalies at the thermocline level. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

3.
In this study, singular vector analysis was performed for the period from 1856 to 2003 using the latest Zebiak–Cane model version LDEO5. The singular vector, representing the optimal growth pattern of initial perturbations/errors, was obtained by perturbing the constructed tangent linear model of the Zebiak–Cane model. Variations in the singular vector and singular value, as a function of initial time, season, ENSO states, and optimal period, were investigated. Emphasis was placed on exploring relative roles of linear and nonlinear processes in the optimal perturbation growth of ENSO, and deriving statistically robust conclusions using long-term singular vector analysis. It was found that the first singular vector is dominated by a west–east dipole spanning most of the equatorial Pacific, with one center located in the east and the other in the central Pacific. Singular vectors are less sensitive to initial conditions, i.e., independence of seasons and decades; while singular values exhibit a strong sensitivity to initial conditions. The dynamical diagnosis shows that the total linear and nonlinear heating terms play opposite roles in controlling the optimal perturbation growth, and that the linear optimal perturbation is more than twice as large as the nonlinear one. The total linear heating causes a warming effect and controls two positive perturbation growth regions: one in the central Pacific and the other in the eastern Pacific; whereas the total linearized nonlinear advection brings a cooling effect controlling the negative perturbation growth in the central Pacific.  相似文献   

4.
Based on the Lagrangian change equation of vertical vorticity deduced from the equation of threedimensional Ertel potential vorticity(PV e),the development and movement of vortex are investigated from the view of potential vorticity and diabatic heating(PV-Q).It is demonstrated that the asymmetric distribution in the vortex of the non-uniform diabatic heating in both vertical and horizontal can lead to the vortex’s development and movement.The theoretical results are used to analyze the development and movement of a Tibetan Plateau(TP) vortex(TPV),which appeared over the TP,then slid down and moved eastward in late July 2008,resulting in heavy rainfall in Sichuan Province and along the middle and lower reaches of the Yangtze River.The relative contributions to the vertical vorticity development of the TPV are decomposed into three parts:the diabatic heating,the change in horizontal component of PV e(defined as PV 2),and the change in static stability θ z.The results show that in most cases,diabatic heating plays a leading role,followed by the change in PV 2,while the change of θ z usually has a negative impact in a stable atmosphere when the atmosphere becomes more stable,and has a positive contribution when the atmosphere approaches neutral stratification.The intensification of the TPV from 0600 to 1200 UTC 22 July 2008 is mainly due to the diabatic heating associated with the precipitation on the eastern side of the TPV when it uplifted on the up-slope of the northeastern edge of the Sichuan basin.The vertical gradient of diabatic heating makes positive(negative) PV e generation below(above) the maximum of diabatic heating;the positive PV e generation not only intensifies the low-level vortex but also enhances the vertical extent of the vortex as it uplifts.The change in PV e due to the horizontal gradient of diabatic heating depends on the vertical shear of horizontal wind that passes through the center of diabatic heating.The horizontal gradient of diabatic heating makes positive(negative) PV e generation on the right(left) side of the vertical shear of horizontal wind.The positive PV e generation on the right side of the vertical shear of horizontal wind not only intensifies the local vertical vorticity but also affects direction of movement of the TPV.These diagnostic results are in good agreement with the theoretic results developed from the PV-Q view.  相似文献   

5.
The neutrally stratified flow over the Askervein Hill was simulatedusing a terrain-following coordinatesystem and a two-equation(k - ) turbulence model. Calculations were performed on awide range of numerical grids to assess, among other things, theimportance of spatial discretization and the limitations of theturbulence model. Our results showed that a relatively coarse gridwas enough to resolve the flow in the upstream region of the hill;at the hilltop, 10 m above the ground, the speed-up was 10% lessthan the experimental value. The flow's most prominent feature wasa recirculating region in the lee of the hill, which determinedthe main characteristics of the whole downstream flow. This regionhad an intermittent nature and could be fully captured only in the caseof a time-dependent formulation and a third-order discretization ofthe advective terms. The reduction of the characteristic roughnessnear the top of the hill was also taken into account, showing theimportance of this parameter, particularly in the flow close to theground at the summit and in the downstream side of the hill.Calculations involving an enlarged area around the Askervein Hillshowed that the presence of the nearby topography affected the flowneither at the top nor downstream of the Askervein Hill.  相似文献   

6.
A preindustrial climate experiment was conducted with the third version of the CNRM global atmosphere–ocean–sea ice coupled model (CNRM-CM3) for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). This experiment is used to investigate the main physical processes involved in the variability of the North Atlantic ocean convection and the induced variability of the Atlantic meridional overturning circulation (MOC). Three ocean convection sites are simulated, in the Labrador, Irminger and Greenland–Iceland–Norwegian (GIN) Seas in agreement with observations. A mechanism linking the variability of the Arctic sea ice cover and convection in the GIN Seas is highlighted. Contrary to previous suggested mechanisms, in CNRM-CM3 the latter is not modulated by the variability of freshwater export through Fram Strait. Instead, the variability of convection is mainly driven by the variability of the sea ice edge position in the Greenland Sea. In this area, the surface freshwater balance is dominated by the freshwater input due to the melting of sea ice. The ice edge position is modulated either by northwestward geostrophic current anomalies or by an intensification of northerly winds. In the model, stronger than average northerly winds force simultaneous intense convective events in the Irminger and GIN Seas. Convection interacts with the thermohaline circulation on timescales of 5–10 years, which translates into MOC anomalies propagating southward from the convection sites.  相似文献   

7.
Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhelms thermal forcing in maintaining the mean flow in which the internal mechanical forcing associated with horizontal eddy flux of momentum plays the most important roles. Both internal forcing and external forcing are shown to be active and at the first place for the mean flow variations, whereas the forcing-induced mean meridional circulation is passive and secondary. It is also shown that the effects on mean flow of external mechanical forcing are concentrated in the lower troposphere, whereas those due to wave-mean flow interaction are more important in the upper troposphere. These act together and result in the vertically easterly shear in low latitudes and westerly shear in mid-latitudes. This vertical shear of mean flow is to some extent weakened by thermal forcing.  相似文献   

8.
This is the second part of the 148 years (1856–2003) singular vector analysis, as an extension of part I (Cheng et al. 2009 Clim Dyn, doi:), in which a fully physically based tangent linear model has been constructed for the Zebiak-Cane model LDEO5 version. In the present study, relationships between the singular values and prediction skill measures are investigated for the 148 years. Results show that at decadal/interdecadal time scales, an inverse relationship exists between the singular value (S1) and correlation-based skill measures whereas an in-phase relationship exists between the S1 and MSE-based skill measures. However, the S1 is not a good measure or predictor of prediction skill at shorter time scales such as the interannual time scale and for individual prediction. To explain these findings, S1 was decomposed into linear perturbation growth rate (L1) and linearized nonlinear perturbation growth rate (N1), which are controlled by the opposite underlying model dynamical processes (the linear warming and the nonlinear cooling). An offsetting effect was found between L1 and N1, which have opposite contributions to the S1 (i.e., S1 ≈ L1 − N1). The “negative” perturbation growth rate −N1 (denoted as NN1) probably is the consequence of the unrealistic nonlinear cooling in the LDEO5 model. Although the correlations of the actual prediction skill to both the L1 and the NN1 are good, their opposite signs lead to a weak relationship between S1 and actual prediction skill. Therefore, either L1 or N1/NN1 is better than S1 in measuring actual prediction skill for the LDEO5 model.  相似文献   

9.
The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.  相似文献   

10.
A hybrid coupled model(HCM) is constructed for El Nino–Southern Oscillation(ENSO)-related modeling studies over almost the entire Pacific basin. An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures. In addition, various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM, including stochastic forcing of atmospheric winds, and feedbacks associated with freshwater flux, ocean biology-induced heating(OBH), and tropical instability waves(TIWs). In addition to its computational efficiency, the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively, allowing their modulating effects on ENSO to be examined in a clean and clear way. In this paper, examples are given to illustrate the ability of the HCM to depict the mean ocean state, the circulation pathways connecting the subtropics and tropics in the western Pacific, and interannual variability associated with ENSO. As satellite data are taken to parameterize processes that are not explicitly represented in the HCM, this work also demonstrates an innovative method of using remotely sensed data for climate modeling. Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part II of this study.  相似文献   

11.
 The thirty year simulation of the coupled global atmosphere-tropical Pacific Ocean general circulation model of the Laboratoire de Métérologie Dynamique and the Laboratoire d’Océanographie Dynamique et de Climatologie presented in Part I is further investigated in order to understand the mechanisms of interannual variability. The model does simulate interannual events with ENSO characteristics; the dominant periodicity is quasi-biennial, though strong events are separated by four year intervals. The mechanism that is responsible for seasonal oscillations, identified in Part I, is also active in interannual variability with the difference that now the Western Pacific is dynamically involved. A warm interannual phase is associated with an equatorward shift of the ITCZ in the Western and Central Pacific. The coupling between the ITCZ and the ocean circulation is then responsible for the cooling of the equatorial subsurface by the draining mechanism. Cold subsurface temperature anomalies then propagate eastward along the mean equatorial thermocline. Upon reaching the Eastern Pacific where the mean thermocline is shallow, cold subsurface anomalies affect surface temperatures and reverse the phase of the oscillation. The preferred season for efficient eastward propagation of thermocline depth temperature anomalies is boreal autumn, when draining of equatorial waters towards higher latitudes is weaker than in spring by a factor of six. In that way, the annual cycle acts as a dam that synchronizes lower frequency oscillations. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

12.
13.
Summary  A completely new nonhydrostatic model system known as the Advanced Regional Prediction System (ARPS) has been developed in recent years at the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma. The ARPS is designed from the beginning to serve as an effective tool for basic and applied research and as a system suitable for explicit prediction of convective storms as well as weather systems at other scales. The ARPS includes its own data ingest, quality control and objective analysis packages, a data assimilation system which includes single-Doppler velocity and thermodynamic retrieval algorithms, the forward prediction component, and a self-contained post-processing, diagnostic and verification package. The forward prediction component of the ARPS is a three-dimensional, nonhydrostatic compressible model formulated in generalized terrain-following coordinates. Minimum approximations are made to the original governing equations. The split-explicit scheme is used to integrate the sound-wave containing equations, which allows the horizontal domain-decomposition strategy to be efficiently implemented for distributed-memory massively parallel computers. The model performs equally well on conventional shared-memory scalar and vector processors. The model employs advanced numerical techniques, including monotonic advection schemes for scalar transport and variance-conserving fourth-order advection for other variables. The model also includes state-of-the-art physics parameterization schemes that are important for explicit prediction of convective storms as well as the prediction of flows at larger scales. Unique to this system are the consistent code styling maintained for the entire model system and thorough internal documentation. Modern software engineering practices are employed to ensure that the system is modular, extensible and easy to use. The system has been undergoing real-time prediction tests at the synoptic through storm scales in the past several years over the continental United States as well as in part of Asia, some of which included retrieved Doppler radar data and hydrometeor types in the initial condition. As the first of a two-part paper series, we describe herein the dynamic and numerical framework of the model, together with the subgrid-scale turbulence and the PBL parameterization. The model dynamic and numerical framework is then verified using idealized and realistic mountain flow cases and an idealized density current. Other physics parameterization schemes will be described in Part II, which is followed by verification against observational data of the coupled soil-vegetation model, surface layer fluxes and the PBL parameterization. Applications of the model to the simulation of an observed supercell storm and to the prediction of a real case are also found in Part II. In the latter case, a long-lasting squall line developed and propagated across the eastern part of the United States following a historical number of tornado outbreak in the state of Arkansas. Received April 14, 2000 Revised July 17, 2000  相似文献   

14.
The generation of heat in buildings, and the way this heat is exchanged with the exterior, plays an important role in urban climate. To analyze the impact on urban climate of a change in the urban structure, it is necessary to build and use a model capable of accounting for all the urban heat fluxes. In this contribution, a new building energy model (BEM) is developed and implemented in an urban canopy parameterization (UCP) for mesoscale models. The new model accounts for: the diffusion of heat through walls, roofs, and floors; natural ventilation; the radiation exchanged between indoor surfaces; the generation of heat due to occupants and equipments; and the consumption of energy due to air conditioning systems. The behavior of BEM is compared to other models used in the thermal analysis of buildings (CBS-MASS, BLAST, and TARP) and with another box-building model. Eventually, a sensitivity analysis of different parameters, as well as a study of the impact of BEM on the UCP is carried out. The validations indicate that BEM provides good estimates of the physical behavior of buildings and it is a step towards a modeling tool that can be an important support to urban planners.  相似文献   

15.
16.
A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the n...  相似文献   

17.
Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (A e). This leads to a simple expression of the entrainment rate, in which A e needs to be parameterized. According to the results in Liu et al. (2016), A e can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect, the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect. These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL. This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models, this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.  相似文献   

18.
19.
The role of various mountains in the Asian monsoon system is investigated by AGCM simulations with different mountains.The comparison of the simulation with Asian mountains(MAsia run)with the simulation without mountains(NM run)reveals that the presence of the Asian mountains results in a stronger South Asian summer monsoon(SASM),characterized by enhanced lower-tropospheric westerly winds,uppertropospheric easterly winds,and stronger water vapor convergence.In East Asia,the southerly winds and water vapor convergence are significantly strengthened in association with the intensified zonal pressure gradient between the East Asian continent and the Pacific Ocean.Both the dynamical and thermodynamic forcing of the Tibetan Plateau play important role in strengthening the Asian summer monsoon.In winter,the presence of Asian mountains significantly strengthens the continental high,which leads to a stronger Asian winter monsoon.The presence of African-Arabian mountains helps to intensify the exchange of mass between the Southern Hemisphere and Northern Hemisphere by strengthening the cross equatorial flows in the lower and upper troposphere over East Africa. Asian mountains also play a crucial role in the seasonal evolution of Asian monsoons.In comparison with the NM run,the earlier onset and later withdrawal of lower-tropospheric westerly winds can be found over South Asia in the MAsia run,indicating a longer SASM period.The African-Arabian mountains also moderately contribute to the seasonal variation of the South Asian monsoon.In East Asia,the clear southto-north march of the southerly winds and subtropical rainfall starts to occur in early summer when the effects of Asian mountains are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号