首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various extraction procedures were employed for measuring extractable concentrations of potential toxic elements in soil. The extractability of Cd, Cu, Pb and Zn in four contaminated and four non-contaminated soils of Japan, was compared by single extraction (CaCl2, DTPA, NH4Cl, 0.1 M HCl and 1 M HCl ) and sequential extraction procedures [(six operationally defined chemical phases, viz. water soluble (Fl), exchangeable (F2), carbonate (F3), oxide (F4), organic (F5) and residual (F6) fractions)]. Extractability of metals from soils samples varied depending on metals and/or extradants used. Among the extradants, 1 M HCl extracted the largest proportion of Cd (79 to 96% of total), Cu (61 to 83%), Pb (51 to 99%) and Zn (23 to 52%) from soils followed by 0.1 M HCl, NH4Cl, DTPA and CaCl2. In all the extradants, the proportion of extractability of metals was higher in the contaminated soils than the non-contaminated soils. Regardless of soils and extradants, relative extractability was higher for Cd as compared to other three metals. The use of 1 M HCl may be recommended for first-level screening of soil contamination with heavy metals. The other four weak extradants are believed to provide a better assessment of bioavailable/mobile metals content in soils than 1 M HCl extradant. However, 0.1 M HCl mobilized all four metals irrespective of soil types, therefore, might be the best choice if only one extradant is to be used. The sequential extraction procedures showed 22 to 64% of total Cd was in the mobile fraction (sum of Fl to F3), while the corresponding values for Cu, Pb and Zn in this fractions were 2 to 23% suggesting higher mobility of Cd than other three metals. The single extraction procedures are simple and easy to perform and obtained results are comparable with sequential extraction procedure.  相似文献   

2.
Desorption of Zinc (Zn) in the rhizosphere soil is the primary factor that affects bioavailability of Zn. To improve predictions of Zn availability in amended soil, it is important that time-dependent desorption behavior of Zn in the rhizosphere soil should be understood. The greenhouse experiment was performed to determine Zn desorption characteristics in the bulk and the bean rhizosphere soils amended with municipal sewage sludge (1 % w/w) using rhizobox. The kinetics of Zn desorption was determined by successive extraction with 10-mM citric acid in a period of 1–504 h at 25 ± 1 °C in the bulk and the rhizosphere soils. Moreover, Zn was extracted using three extractants (DTPA-TEA, AB-DTPA, and Mehlich 3) in the bulk and the rhizosphere soils. The results showed that Zn extracted and Zn desorption rate in the bean rhizosphere soils were significantly (P < 0.01) lower than in the bulk soils. The mean of Zn desorption in the bulk and the rhizosphere soils were 16.47 and 15.50 mg kg?1, respectively. Desorption kinetics of Zn conformed fairly well to first-order, parabolic diffusion, and power function equations. The results of kinetics study indicated that desorption rate coefficients decreased in the rhizosphere soils compared to the bulk soils. The correlation studies showed that the rate constants in the power function equation were significantly correlated (P < 0.05) with Zn extracted using DTPA-TEA, AB-DTPA and Mehlich 3 in the bean rhizosphere and the bulk soils. The results of this research showed that Zn desorption in citric acid in the bean rhizosphere of amended soils were lower than the bulk of amended soils.  相似文献   

3.
Theeco environmentalpollutioncausedbyminingdevelopmentisaworldwideproblem ,whichhasarousedever increasingattentionofscientists.Inadditiontovegetationdestructionanderosionofcultivatedlanddirectlycausedbyminingdevelopment,scientistshaveplacedmorefocusontheenvironmentalproblemsinducedbythereleaseofharmfulsubstances ( particularlyheavymetals) .Especiallyundersurfaceconditions,thepiled upminewastes (minetailings)undergoweatheringundertheactionofaseriesofgeochemicalfactorssuchasthemineralogyofmineta…  相似文献   

4.
Heavy metals in tailings and mining wastes from abandoned mines can be released into adjacent agricultural field and bioaccumulated in crops or vegetables. Therefore, prediction of metal bioavailability has become an important issue to prevent adverse effect of bioaccumulated metals on human health. In this study, single and sequential extraction methods were compared using multivariate analysis to predict the bioavailability of Cd and As in contaminated rhizosphere soils. Single extraction using 0.1 M HCl for Cd and 1.0 M HCl for As had an extraction efficiency of 8–12% for soil Cd and 14–17% for soil As compared to total concentration extracted with aqua regia. Using sequential extraction, Fe–Mn-bound Cd (FR3) and residual Cd (FR5) were the dominant fractions representing 43 and 41% of total Cd concentration. For As, the strongly absorbed form (FR2) was the most abundant chemical fraction showing 45–54% of the total As concentration in soil. Multivariate analyses showed that single extraction with HCl and total concentration of Cd and As in soil were significantly correlated to potato and green onion plant tissue metal concentration. Although little information was obtained with multiple regression analysis because of multicollinearity of variables, the result of principle component analysis (PCA) revealed that the highest positive loading was obtained using total concentration of Cd and As in soil in the first principle component (PC1). In addition, total concentration of Cd and As in soil was independently grouped with other chemical fractions by cluster analysis. Therefore, the overall result of this research indicated that total concentrations of Cd and As in rhizosphere soils were the best predictors of bioavailability of heavy metals in these contaminated soils.  相似文献   

5.
Sixty sediment samples with a wide range of heavy‐metal concentrations and sediment textures were collected from Sydney Harbour. The samples were extracted with 1M HCl, 0.05M EDTA and HClO4/HNO3 and analysed by flame atomic absorption spectrometry for Zn, Pb, Cu and Cd. 1M HCl extracted a large proportion of heavy metals in oxic sediments (60–100%), whereas the extractability of metals with 0.05M EDTA was generally lower (by ~20%). Extractability was unrelated to the level of contamination or to sediment texture. The extractability of Cu in anoxic sediments was substantially lower with 1M HCl (~20%) and 0.05M EDTA (~10%) than with HClO4/HNO3. The extractability of Pb with 0.05M EDTA was also reduced in anoxic sediments (to ~70%). The use of weak extractants, in particular 1M HCl, is recommended by the recently introduced ANZECC and ARMCANZ interim sediment‐quality guidelines. These extractants are believed to provide a better measure of the bioavailable metal content than strong acid extractants. In this study, anoxic, sulfidic environments had a major influence on metal extractability with weak extractants. The implication of this is that the number of samples requiring further testing, as stipulated by the guidelines, would be significantly reduced in anoxic sediments.  相似文献   

6.
Arsenic in soil, vegetation and water of a contaminated region   总被引:2,自引:1,他引:1  
Arsenic concentrations of surface waters, soils and plants were surveyed in three contaminated villages of Bijar County. Total arsenic in water samples (4.5 to 280 μg/L) was correlated with electrical conductivity, total dissolved solid, total hardness, alkalinity, chloride, sulphate, bicarbonate, calcium and sodium (p<0.001). Total arsenic in the soils ranged from 105.4 to 1500 mg/kg. Some of the soil factors play an important role in soil arsenic content and its bioavailability for organisms. In general, the arsenic concentrations in plants were low, especially in the most common wild species. Among 13 plant species, the highest mean arsenic concentration was found in leaves of Mentha Longifolia (79.4 mg/kg). Arsenic levels in soils and plants were positively correlated, while the ability of the plants to accumulate the element, expressed by their biological accumulation coefficients and arsenic transfer factors, was independent of the soil arsenic concentration. Relationships between the arsenic concentrations in plants, soils and surface water and the environmental aspects of these relationships have been discussed in comparison with literature data. The accumulation of arsenic in environmental samples (soil, sediment, water, plant, etc.) poses a potential risk to human health due to the transfer of this element in aquatic media, their uptake by plants and subsequent introduction into the food chain.  相似文献   

7.
Rhizosphere has different chemical and biological properties from bulk soils. Information about copper (Cu) desorption characteristics in the rhizosphere soils is limited. The objectives of this study were to determine Cu desorption characteristics and the correlation of its parameters with Cu extracted by DTPA-TEA, AB-DTPA and Mehlich 3 in bulk and rhizosphere amended soils with sewage sludge (10 g of sewage sludge was added to 1 kg soil) under greenhouse conditions in a rhizobox. The kinetics of Cu desorption in the rhizosphere and bulk was determined by successive extraction with DTPA-TEA in a period of 1 to 504 h at 25 ± 1 °C. The results showed that Cu extracted using several chemical extractants in the rhizosphere were significantly (P < 0.05) lower than in the bulk amended soils. In addition, Cu extracted using successive extraction in the rhizosphere were significantly (P < 0.01) lower than in the bulk soils. The best model for describing extraction data for the bulk and rhizosphere soils was the parabolic diffusion equation. Desorption kinetics of Cu conformed fairly well to first order and power function models. The results indicated that Cu diffusion rate in the wheat rhizosphere soils lower than in the bulk soils. Cu desorption rate in parabolic diffusion ranged from 0.326 to 0.580 mg kg?1 h?1/2 in the bulk soils, while it ranged from 0.282 to 0.490 mg kg?1 h?1/2 in the rhizosphere soils. Significant correlation (P < 0.05) between determine R values of parabolic diffusion and Cu desorption during 504 h with extracted Cu using DTPA-TEA, AB-DTPA and Mehlich 3 were found in the bulk and the rhizosphere soils. The results of this research revealed that Cu desorption characteristics in the wheat rhizosphere soils are quite different from bulk soils amended with sewage sludge.  相似文献   

8.
The bioavailability of copper in contaminated soils has received more attention due to the safety concern of food chain. The bioavailability of metals is determined by its fractions which are affected by the soil properties and its aging time. This paper focused on the aging effect on the bioavailability of copper added to the soil. The garden soil (fluvo aquic soil) was treated with 100 mg/kg and 1000 mg/kg of copper(II) sulfate and incubated for 14, 21, 28, 42, 63, 120, 200, 300 and 400 days in the laboratory respectively. The sequential extraction procedure was used to characterize copper bioavailability in the soil. Meanwhile, the barley was cultured on the same soil incubated and its toxicity was assessed according to the guideline of International Organization for Standardization. The findings show that the exchangeable and carbonate-bound copper decreased with the aging time after addition of copper(II) sulfate to soil. Meanwhile, the percentages of Fe-Mn oxides- and organic-bound copper increased. The residual copper was changed little during the aging course. The copper fractions became stable in soils after 60 days. The kinetic equations showed that the Power function and the Elovich equation were well fitted to the experimental data, and the r2 values ranged from 0.840 to 0.982 and 0.741 to 0.975, respectively. The barley test showed that the barley root length was more sensitive to reflect copper toxicity than the shoot biomass, and the exchangeable and carbonate-bound copper were significantly correlated with the barley root length.  相似文献   

9.
This study reports on trace metal uptake by the grass species Melinis repens, growing in roadside soils and sediments in tropical northeastern Australia. Median total Cu, Pb, Ni and Zn concentrations were significantly (P < 0.05) higher in road edge soils (Cu = 61.1 mg/kg, Pb = 97.3 mg/kg, Ni = 28.6 mg/kg, Zn = 729 mg/kg) than in background soils collected away from roads (Cu = 5.8 mg/kg, Pb = 11.2 mg/kg, Ni = 3.7 mg/kg, Zn = 21 mg/kg). Significantly (P < 0.05) elevated Zn values were recorded in the stems of the M. repens specimens growing on roadside soils (231.6 mg/kg dry weight of tissue) compared with those of grasses growing on background soils (40.8 mg/kg dry weight of tissue). Moreover, median Cu, Ni and Zn values in the roots of roadside grasses (Cu = 29.1 mg/kg, Ni = 2.73 mg/kg, Zn = 169 mg/kg) were significantly (P < 0.05) higher than their respective levels in the roots of background M. repens samples (Cu = 5.98 mg/kg, Ni = 0.70 mg/kg, Zn = 22 mg/kg). A greenhouse experiment showed that Cu and Zn in road sediments are labile and are available for uptake by M. repens. The studied roadside soils and sediments were leached with a diethylenetriaminepentaacetic acid–CaCl2–triethanolamine–HCl extraction solution, which proved to be a rudimentary indicator of Zn availability and uptake to the root tissue of M. repens. The results demonstrate that trace metals in roadside grasses have the potential to be directed up the food-chain as grasses are consumed by herbivores. In addition, bioavailable metal contaminants hosted by road sediments have the capacity to impact on ecosystems downstream of roads because these sediments are mobilised by road runoff waters from road surfaces into adjoining catchments.  相似文献   

10.
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00–0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests (r = 0.655–0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).  相似文献   

11.
Trace metals in soils may pose risks to both ecosystem and human health, especially in an urban environment. However, only a fraction of the metal content in soil is mobile and/or available for biota uptake and human ingestion. Various environmental availabilities of trace metals (Cu, Pb and Zn) in topsoil from highly urbanized areas of Hong Kong to plants, organisms, and humans, as well as the leaching potential to groundwater were evaluated in the present study. Forty selected soil samples were extracted with 0.11 M acid acetic, 0.01 M calcium chloride, 0.005 M diethylenetriaminepentaacetic acid, and simplified physiologically based extraction tests (PBET) for the operationally defined mobilizable, effectively bioavailable, potentially bioavailable, and human bioaccessible metal fractions, respectively. The metals were generally in the order of Zn > Cu ∼ Pb for both mobility (24%, 7.6%, 6.7%) and effective bioavailability (2.8%, 0.9%, 0.6%), Pb (18%) > Cu (13%) > Zn (7.4%) for potential bioavailability, and Pb (59%) ∼ Cu (58%) > Zn (38%) for human bioaccessibility. Although the variations in the different available concentrations of metals could mostly be explained by total metal concentrations in soil, the regression model predictions were further improved by the incorporation of soil physicochemical properties (pH, OM, EC). The effectively bioavailable Zn and Pb were mostly related to soil pH. Anthropogenic Pb in urban soils tended to be environmentally available as indicated by Pb isotopic composition analysis. Combining various site-specific environmental availabilities might produce a more realistic estimation for the integrated ecological and human health risks of metal contamination in urban soils.  相似文献   

12.
Rapid transport of anthropogenic lead through soils in southeast Missouri   总被引:1,自引:0,他引:1  
To investigate Pb transport and cycling, soils from the forest floor and cores from White Oaks (Quercus alba L.) were collected near a Pb smelter in SE Missouri at varying depths from the surface and varying distances. Lead concentrations in soil samples at the surface drop dramatically with distance from approximately 1500 mg/kg at less than 2 km from the smelter to around 100 mg/kg at localities greater than 2 km from the smelter. Lead contents in tree rings are below 0.5 mg/kg in samples dated prior to 1970, and rapidly increase in 1975–1990 samples. Isotopic compositions of soils and tree rings exhibit systematic variations of Pb isotopic compositions with depth and tree ring age. Distinguishable isotopic signatures for Pb sources allowed quantification of the contribution of smelter Pb to the soils. At depths where Pb concentrations decreased and approached constant values (10–25 cm, 10–30 mg/kg), 50–90%, 40–50% and 10–50% of the Pb could be derived from the smelter for the samples at locations less than 2, 2–4 and over 4 km from the smelter, respectively. The remaining portion was attributable to automobile emission and bedrock sources. Because the smelter operated from 1963 to 2003 and samples were collected in 1999, it is estimated that smelter Pb infiltrates at rates of 1 cm/yr (30 cm in 30 yr). At distances less than 1.5 km from the smelter, even though Pb concentrations become asymptotic at a depth of 30 cm, isotopic evidence suggests that Pb has migrated below this depth, presumably through exchange with naturally occurring Pb in the soil matrix. This implies that soils heavily polluted by Pb can exceed their Pb carrying capacity, which could have potential impacts on shallow groundwater systems and risk further exposure to human and ecological receptors.  相似文献   

13.
广西壮族自治区碳酸盐岩分布面积为96 372 km2,约占全区陆地国土面积的407%。由碳酸盐岩风化形成的土壤中Cd、Pb、Hg等重金属元素普遍富集。初步评价发现,农作物籽实对Cd的吸收量与土壤Cd含量无对应关系,农作物Cd超标多出现在土壤Cd含量较低的地区。进一步研究发现,Cd高含量的土壤中普遍含有铝土矿、Fe Mn结核等颗粒。为了探索土壤中Cd存在形态及其影响因素,选择了含铝土矿和铁锰结核的横县土壤和无铝土矿与铁锰结核的象州土壤,系统研究了土壤Cd形态差异及其影响因素。结果表明:(1)象州土壤中Cd主要以活动态形式存在,生物可利用性高,横县土壤中Cd主要以稳定态形式存在,生物可利用性低。(2)pH值为60是象州土壤Cd活动态含量的突变点,pH值在60处含量达到最大值;而在横县,pH降低使活动态Cd比例增加。(3)象州土壤中活动态Cd随有机质增加而增加,表明Cd被有机质弱吸附;而横县土壤有机质含量与Cd形态无明显相关性。(4)由铝土矿导致的土壤高Cd含量,多以残渣态形式存在,不会对动植物造成危害。  相似文献   

14.
Pollution load and contamination levels of phthalate esters (PAEs) in agricultural soils throughout China were studied in this work. The usage amount and residual rates of plastic film were the main factors explaining the variation among regions and leading to higher pollution load and contamination levels in agricultural big provinces. However, higher pollution loads and contamination levels frequently occurred under non-recycling than recycling scenarios during calculation. Extremely high loads (more than 10 kg/ha/year) of PAEs were estimated in five areas including Beijing city, Tibet, Liaoning Province, Jilin Province and Fujian Province and the high contamination levels in agricultural soil were presented in these places with more than 4.0 mg/kg under non-recycling scenarios. The predicted concentrations of PAEs in soils exceed the target value for soils from Netherlands (ΣPAEs = 0.1 mg/kg), indicating very high contamination of most Chinese agricultural soils. Significant differences in estimation results after plastic film utilization suggest that decreasing plastic film residue after application is an effective measure to control PAE pollution in soils. However, the comparison between contamination levels of PAEs estimated by the model and the previous detections of PAEs pollution levels in agricultural soils showed that there were presented wide range of PAE sources indicated to agricultural soils.  相似文献   

15.
Sixty-two soil samples collected from different functional zones of Guiyang were analyzed for total concentrations and sequential extraction of Cr, Cu, Pb, Zn and Cd by ICP spectrometry. The average total concentrations ofCr, Cu, Pb, Zn and Cd in the soils of Guiyang were 92.9, 51.6, 44.1,139.3 and 0.28 mg/kg, respectively. The soils have been polluted by Cr, Cu, Pb, Zn and Cd to some extent in comparison with the background values of Guiyang. Significant differences were recognized in the concentrations of Cr, Cu, Pb, Zn and Cd in different functional zones. As for the sequential extraction, Cr, Cu and Zn were present mainly in the residual fraction, and Pb was present mainly in the oxidizable fraction. The reducible fraction of Cd accounts for 47.5%, and the residual fraction is lowest. The mobility and bioavailability of heavy metals follow the order of Cd〉Pb〉Cu〉Cr〉Zn.  相似文献   

16.
以海泡石、膨润土和生石灰为修复材料,对湖南株洲地区重金属元素Cd、Pb污染农田土壤进行了室内修复实验。盆栽小白菜的正交实验结果表明,对于Cd含量为1.23 mg/kg、Pb含量为136.7 mg/kg的土壤,当每10 kg土壤添加膨润土60 g、海泡石20 g、石灰6 g时,种植的小白菜中Cd含量为0.154 mg/kg,Pb含量为0.141mg/kg。与未修复土壤的实验结果对比,小白菜中Cd含量降低61%,Pb含量降低46%。  相似文献   

17.
汞污染土壤的萃取修复技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈宗英  张焕祯 《地学前缘》2012,19(6):230-235
分别采用HAc、NH4Ac、KI、EDTA、Na2S2O3等萃取剂萃取污染土壤中汞,研究了萃取剂对汞的萃取效果和萃取条件对萃取率的影响,并分析了用Na2S2O3溶液萃取前后土壤中汞的形态变化。结果表明,Na2S2O3水溶液对汞的萃取效果最好,适宜萃取条件为:浓度0.1 mol·L-1、土液比1∶6、萃取时间12 h,当土壤中汞浓度为107.86 mg/kg时,萃取率为65.32%。污染土样在适宜萃取条件下经Na2S2O3溶液萃取后,土壤中可交换态汞、酸溶态汞和硝酸溶态汞基本完全去除,土壤中汞的生物有效性显著降低;萃取后土样的浸出毒性检测符合《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)中要求的无害化堆放标准。  相似文献   

18.
《Applied Geochemistry》2003,18(11):1663-1670
Areas showing anomalously high levels of heavy metals (eg. Cu, Pb, Sn, Zn) in both peri-urban and rural soils in parts of western Lancashire (UK) were indentified during a regional geochemical survey. The sites were identified as areas of former peat fenland that had been filled in with a variety of domestic and industrial wastes including furnace slag, as well as inert rubble. The very high levels of heavy metals present in the soil raises concerns about possible translocation into food crops, as this is an important market gardening area. There is no direct evidence of a health risk, and the high-pH soils will limit metal mobility and bioavailability, but these soils are worthy of further multidisciplinary scientific investigation.  相似文献   

19.
Toxicity of heavy metals adversely affects environment and human health. Organic materials derived from natural matters or wastes have been applied to soils to reduce the mobility of contaminants such as heavy metals. However, the application of cow bone powder (CB), biochar (BC), and eggshell powder (ES) is rarely investigated for the reduction of Pb bioavailability in soils irrigated with saline water. The objective of this study was to assess the effectiveness of CB, BC, and ES additions as immobilizing substances on Pb bioavailability in shooting range soil irrigated with deionized and saline water. Each additive of CB, BC, and ES at 5 % (w/w) was mixed with soils and then the deionized and saline water were irrigated for 21 days. With deionized water irrigation, the soils treated with CB, BC, and ES exhibited higher pH when compared with saline water irrigation. With saline water irrigation, the electrical conductivity, water-soluble anions, and cations were significantly increased in soils treated with CB, BC, and ES. The water-soluble Pb in soils treated with CB, BC, and ES was significantly decreased with saline water irrigation. On the other hand, the water-soluble Pb in soil treated with CB was increased with deionized water irrigation. Only BC with saline water irrigation decreased the Pb concentration in maize shoots.  相似文献   

20.
氨基泡塑的合成及其应用于富集地质样品中的痕量金   总被引:3,自引:2,他引:1  
采用泡塑(PUF)富集,AAS或ICP-OES测定地质样品中痕量金是常用的分析方法。与活性炭相比,PUF的选择性好,但吸附容量偏低,可将泡塑负载不同的萃取剂或修饰不同的官能团提高吸附容量。本文将聚醚型泡塑经盐酸水解制备成氨基泡塑(PUF-NH_2)。红外光谱和扫描电镜表征显示,PUF-NH_2峰形发生了明显红移(3376.5 cm-1),其中的氨基数量显著增加,另外PUF-NH_2的高分子出现明显断裂,发生水解后裸露出的氨基具有还原性,在吸附金的过程中易与金离子在PUF-NH_2表面发生氧化还原反应,形成金纳米颗粒。改性后的PUF-NH_2吸附容量达到96 mg/g,与PUF相比提高了8倍。将PUF-NH_2应用于富集地质样品中的金,经炭化灼烧、50%王水提取后用ICP-OES测定,金的加标回收率在95.0%~105.0%之间,检出限为0.15μg/g。实验证明用PUF-NH_2处理样品提高了富集倍数和分析灵敏度,有利于低品位矿石的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号