首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A low-order ocean–atmosphere model is presented which combines coupling through heat exchange at the interface and wind stress forcing. The coupling terms are derived from the boundary conditions and the forcing terms of the constituents. Both the ocean and the atmosphere model are based on Galerkin truncations of the basic fluid dynamical equations. Hence, the coupled model can readily be extended to include more physics and more detail. The model presented here is the simplest of a hierarchy of low-order ocean–atmosphere models. The behaviour of the coupled model is investigated by means of geometric singular perturbation theory and bifurcation analysis. Two ways are found in which the slow time scales can play a role in the coupled dynamics. In the first scenario, a limit cycle on the overturning time scale is created. The associated oscillatory behaviour is governed by internal ocean dynamics. In the second scenario, intermittent behaviour occurs between periodic and chaotic regimes in parameter space.  相似文献   

2.
B Grieger  M Latif 《Climate Dynamics》1994,10(6-7):267-276
Based on a combined data set of sea surface temperature, zonal surface wind stress and upper ocean heat content the dynamics of the El Niño phenomenon is investigated. In a reduced phase space spanned by the first four EOFs two different stochastic models are estimated from the data. A nonlinear model represented by a simulated neural network is compared with a linear model obtained with the principal oscillation pattern (POP) analysis. While the linear model is limited to damped oscillations onto a fix point attractor, the nonlinear model recovers a limit cycle attractor. This indicates that the real system is located above the bifurcation point in parameter space supporting self-sustained oscillations. The results are discussed with respect to consistency with current theory.  相似文献   

3.
近几年中国大气动力学的主要进展   总被引:5,自引:5,他引:5  
10年来,尤其是最近几年来,中国科学家在动力气象学以及新兴发展起来的气候动力学的研究方面取得了明显的进展,许多成果得到国内外专家的重视和好评。本文就主要的几个方面作一概括性的介绍,以促进中国动力气象学和气候动力学研究的进一步发展。  相似文献   

4.
The role of phase locking in a simple model for glacial dynamics   总被引:1,自引:1,他引:1  
Glacial–interglacial oscillations are often described by simple conceptual models. Relatively few models, however, are accompanied by analytical solutions, though detailed analytical investigation of climate models often leads to deeper understanding of the climate system. Here we study a simple conceptual model for glacial dynamics, a simplified version of the sea-ice-switch mechanism of Gildor and Tziperman (Paleoceanography 15:605–615, 2000), and provide a detailed analytical treatment for this model. We show that when the model is forced by a simplified insolation forcing it exhibits rich dynamics and passes through a series of bifurcations before being completely phase-locked to the insolation forcing. Our model suggests that even when the glacial cycles are self-sustained, insolation forcing has a major role on the complexity of glacial cycles: (1) it is possible to obtain glacial–interglacial oscillations for a wider parameters range when the amplitude of the insolation forcing is larger; (2) in addition, the ice-volume becomes more periodic; (3) when the period of the ice-volume is minimal the ice-volume is symmetric and for larger period is more asymmetric; (4) the ice-volume can be either periodic, higher order periodic, or quasi-periodic.  相似文献   

5.
The influence of changes in surface wind-stress on the properties (amplitude and period) and domain of existence of thermohaline millennial oscillations is studied by means of a coupled model of intermediate complexity set up in an idealized spherical sector geometry of the Atlantic basin. Using the atmospheric CO2 concentration as the control parameter, bifurcation diagrams of the model are built to show that the influence of wind-stress changes on glacial abrupt variability is threefold. First, millennial-scale oscillations are significantly amplified through wind-feedback-induced changes in both northern sea ice export and oceanic heat transport. Changes in surface wind-stress more than double the amplitude of the strong warming events that punctuate glacial abrupt variability obtained under prescribed winds in the model. Second, the average duration of both stadials and interstadials is significantly lengthened and the temporal structure of observed variability is better captured under interactive winds. Third, the generation of millennial-scale oscillations is shown to occur for significantly colder climates when wind-stress feedback is enabled. This behaviour results from the strengthening of the negative temperature-advection feedback associated with stronger northward oceanic heat transport under interactive winds.  相似文献   

6.
The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO2 levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30–40?years time scale associated with the Atlantic multidecadal oscillation.  相似文献   

7.
徐祥德 《大气科学》1992,16(2):147-157
本文根据反映热带大气运动的动力系统数学模型,将热带大气周期性振荡产生条件归纳为动力系统相图椭圆型结构形成问题.本文强调了南北半球中纬度冷暖空气活动对赤道地区热力结构的强迫效应,探讨了此类赤道地区外界热力强迫对热带大气运动周期性振荡形成的作用.本文还讨论了与非周期运动相关的动力系统相图椭圆型结构破坏问题及其相图抛物型、双曲型构成前提条件,并研究了各类相图几何图形特征点与大气运动状态的联系.本文研究还表明,南北半球中纬度冷暖空气活动即使属非周期扰动,若满足动力系统相图椭圆型条件,也可引起赤道地区的高频或低频周期性振荡.  相似文献   

8.
Summary ?This paper is concerned with the chaotic behavior of a coupled system consisting of two components, one representing the atmosphere and the other representing the ocean. The system is expressed as a highly truncated spectral model and for each component, the spectral model is similar to that of Lorenz (1963). Interactions between the two components are permitted, which lead to the temporal variation of surface temperature and hence that of a critical model parameter (the Rayleigh number). The emphasis of the paper is placed upon the chaotic behavior arising from the interactions between the two components and from periodic external forcing. Numerical tests are carried out to show that through interactions, the chaotic behavior of one component may result in chaos of the other even if the latter is otherwise stationary or periodic. It is shown that chaos may also occur if the system is forced periodically at certain frequencies. This study indicates that a new mechanism for chaos exists for coupled systems which are subject not only to internal fluid dynamic nonlinear interactions, but also to interactions between different components and external forcing. Received July 24, 2001; revised March 25, 2002  相似文献   

9.
为了研究风暴中的动力、微物理和电过程三者间的相互作用 ,在已有的工作基础上 ,建立了一个三维强风暴动力 电耦合数值模式。模式中将云中水物质分为水汽、云水、雨水、冰晶、雪、霰和雹 7类 ,各种粒子采用双变参数谱。考虑了详细的起电过程 ,它们包括扩散、电导、感应和非感应以及次生冰晶起电机制。此外 ,在模式中加入了云内放电参数化过程和云顶处屏蔽电荷层形成的参数化方案用以研究整个雷暴生命史内的电活动特征。最后利用CCOPE(CooperativeConvectivePrecipitationExperiment)计划中 1981年 7月 19日的风暴资料对模式的性能进行了验证 ,模拟结果显示此模式可以较好地描述风暴中动力、微物理和电结构的发展演变过程。  相似文献   

10.
热带和中高纬地区季节内振荡的特征及其动力学诊断   总被引:3,自引:0,他引:3  
使用5年低阶全球谱模式资料,对中高纬大气和热带大气季节内振荡的动力学性质和传播特征进行了诊断研究。分析发现模式再现了大气中季节内振荡在热带和中高纬地区的传播特性以及它们之间的差异。热带大气30—60天振荡在速度势场上表现为纬向—波结构和行波特性,而在散度风场上反映了赤道西太平洋—印度洋东西向偶极子型的振荡。中高纬大气30—60天振荡表现为定常波位相和振幅的变化,即波包络的传播特征。它与中高纬地区遥相关型的转换有关,通过遥相关位相和振幅的变化,不仅完成了热带和中高纬地区之间以及热带不同区域之间的能量输送,而且通过这种能量输送过程把南、北半球中高纬地区季节内振荡联系起来。   相似文献   

11.
Chen  Lilan  Fang  Jiabei  Yang  Xiu-Qun 《Climate Dynamics》2020,55(9-10):2557-2577

While recent observational studies have shown the critical role of atmospheric transient eddy (TE) activities in midlatitude unstable air-sea interaction, there is still a lack of a theoretical framework characterizing such an interaction. In this study, an analytical coupled air-sea model with inclusion of the TE dynamical forcing is developed to investigate the role of such a forcing in midlatitude unstable air-sea interaction. In this model, the atmosphere is governed by a barotropic quasi-geostrophic potential vorticity equation forced by surface diabatic heating and TE vorticity forcing. The ocean is governed by a baroclinic Rossby wave equation driven by wind stress. Sea surface temperature (SST) is determined by mixing layer physics. Based on detailed observational analyses, a parameterized linear relationship between TE vorticity forcing and meridional second-order derivative of SST is proposed to close the equations. Analytical solutions of the coupled model show that the midlatitude air-sea interaction with atmospheric TE dynamical forcing can destabilize the oceanic Rossby wave within a wide range of wavelengths. For the most unstable growing mode, characteristic atmospheric streamfunction anomalies are nearly in phase with their oceanic counterparts and both have a northeastward phase shift relative to SST anomalies, as the observed. Although both surface diabatic heating and TE vorticity forcing can lead to unstable air-sea interaction, the latter has a dominant contribution to the unstable growth. Sensitivity analyses further show that the growth rate of the unstable coupled mode is also influenced by the background zonal wind and the air–sea coupling strength. Such an unstable air-sea interaction provides a key positive feedback mechanism for midlatitude coupled climate variabilities.

  相似文献   

12.
Hong  Mei  Zhang  Ren  Li  Ming  Wang  Shuo  Zeng  Wenhua  Wang  Zhengxin 《Theoretical and Applied Climatology》2017,129(1-2):363-384

Despite much previous effort, the establishment of an accurate model of the western Pacific subtropical high (WPSH) and analysis of its chaotic behavior has proved to be difficult. Based on a phase-space technique, a nonlinear dynamical model of the WPSH ridge line and summer monsoon factors is constructed here from 50 years of data. Using a genetic algorithm, model inversion and parameter optimization are performed. The Lyapunov spectrum, phase portraits, time history, and Poincaré surface of section of the model are analyzed and an initial-value sensitivity test is performed, showing that the model and data have similar phase portraits and that the model is robust. Based on equilibrium stability criteria, four types of equilibria of the model are analyzed. Bifurcations and catastrophes of the equilibria are studied and related to the physical mechanism and actual weather phenomena. The results show that the onset and enhancement of the Somali low-level jet and the latent heat flux of the Indian monsoon are among the most important reasons for the appearance and maintenance of the double-ridge phenomenon. Violent breakout and enhancement of the Mascarene cold high will cause the WPSH to jump northward, resulting in the “empty plum” phenomenon. In the context of bifurcation and catastrophe in the dynamical system, the influence of the factors considered here on the WPSH has theoretical and practical significance. This work also opens the way to new lines of research on the interaction between the WPSH and the summer monsoon system.

  相似文献   

13.
层积云覆盖的海洋边界层云详细微物理过程的数值模拟   总被引:1,自引:0,他引:1  
文中建立了一个含显式分档的云微物理模式和辐射传输模式的一维 3阶湍流闭合模式 ,该模式可用于研究海洋边界层云中气溶胶和云的相互作用过程 ,同时提出了一种新的动力模式和微物理模式耦合方法 ,该方法可使动力模式中液态水相关项可以直接由微物理模式变量计算得到。作为模式的初步应用模拟了 2 0 0 1年APEX/ACE Asia在西太平洋上所观测到的一个个例。模拟结果和观测资料比较表明该模式基本上模拟出层积云覆盖的海洋边界层的基本结构  相似文献   

14.
1.IntroductionSincethe40--50--dayoscillationinthetropicalPacificwasfirstfoundbyMaddenandJulian(1971,1972),ithaslongbeenanimportantresearchtopic.Inobservationalstudies,LauandChan(1985,1986),GhilandMo(1991)showedthattheintraseasonaloscillationsinthetro...  相似文献   

15.
The resonance of topographically forced waves is studied using a quasi-geostrophic spectral model on the rotating sphere. The use of complete spectral expansions without truncation leads to the exact solutions of the nonlinear coupling equations by means of the random phase approximation and the projection operator techniques under the dissipation-vanishing limit. The energy transfer process between topographically forced wave ensemble and zonal mean flow is described.It is shown that the dynamical system loses stability and further bifurcation takes place when the to-pographic force has occurred. There are two sorts of equilibrium point in the resonance system. The unstable equilibrium is an isolated equilibrium point and, therefore, is hardly observed to occur. The stable equilibrium is an attractor set which is related to the phenomenon of blocking.  相似文献   

16.
Abstract

The general circulation of the tropical stratosphere, mesosphere and lowermost thermosphere is discussed at a tutorial level. Observations of the quasi‐biennial and semiannual oscillations by both in situ and satellite techniques are first reviewed. The basic dynamics controlling the zonal‐mean component of the circulation are then discussed. The role of radiative diabatic cooling in constraining the zonal‐mean circulation in the middle atmosphere is emphasized. It is shown that the effectiveness of this radiative constraint is reduced at low latitudes, allowing for the sustained mean flow accelerations over long periods of time characteristic of the quasi‐biennial and semiannual oscillations in the tropics.

The current view is that the dominant driving for the equatorial mean flow accelerations seen in the middle atmosphere derives from vertically‐propagating waves. This process is illustrated here in its simplest context, i.e. the Plumb (1977) model of the interaction of monochromatic internal gravity waves with the mean flow (based on earlier work of Lindzen and Holton, 1968; Holton and Lindzen, 1972). It is shown that the dynamics illustrated by this simple model can serve as the basis for an explanation of the quasi‐biennial oscillation.

The paper then describes some of recent developments in the theory of the quasi‐biennial and semiannual oscillations, including aspects related to the interaction between tropics and midlatitudes in the middle atmosphere. The paper concludes with a discussion of the effects of the long period dynamical variations in the tropical circulation on the chemical composition of the stratosphere.  相似文献   

17.
The coupled atmosphere–ocean box model of the interhemispheric thermohaline circulation (THC) formulated by Scott et al. [Scott, J.R., Marotzke, J., Stone, P.H., 1999. Interhemispheric THC in a coupled box model. J. Phys. Oceanogr., 29, 351–365.] is solved analytically, by introducing the approximation that the time variations of salinity in the ocean are much slower than the time variations in the temperature. The analytic solution shows that there is an unstable limit cycle near the bifurcation where the flow becomes unstable, as suggested by Scott et al.'s numerical solutions. The solution also leads to an analytic expression for the conditions under which the instability discovered by Scott et al. sets in, which is more general than that found by Scott et al. In particular, it includes the effect of coupling the THC to the atmospheric meridional transports of heat and moisture. It shows that the stability of THC is much more sensitive to the representation of the atmospheric heat transport, i.e., to how it depends on the meridional temperature gradient, than it is in hemispheric models. In particular, it shows that interhemispheric ocean models that use mixed boundary conditions, or couple the ocean to a diffusive representation of the atmospheric heat transport, are less susceptible to this kind of instability than when the ocean is coupled to a representation of the atmospheric meridional heat transport which is more sensitive to the meridional temperature gradient, as is implied by observations and theory.  相似文献   

18.
There is evidence that ice age cycles are paced by astronomical forcing, suggesting some kind of synchronisation phenomenon. Here, we identify the type of such synchronisation and explore systematically its uniqueness and robustness using a simple paleoclimate model akin to the van der Pol relaxation oscillator and dynamical system theory. As the insolation is quite a complex quasiperiodic signal involving different frequencies, the traditional concepts used to define synchronisation to periodic forcing are no longer applicable. Instead, we explore a different concept of generalised synchronisation in terms of (coexisting) synchronised solutions for the forced system, their basins of attraction and instabilities. We propose a clustering technique to compute the number of synchronised solutions, each of which corresponds to a different paleoclimate history. In this way, we uncover multistable synchronisation (reminiscent of phase- or frequency-locking to individual periodic components of astronomical forcing) at low forcing strength, and monostable or unique synchronisation at stronger forcing. In the multistable regime, different initial conditions may lead to different paleoclimate histories. To study their robustness, we analyse Lyapunov exponents that quantify the rate of convergence towards each synchronised solution (local stability), and basins of attraction that indicate critical levels of external perturbations (global stability). We find that even though synchronised solutions are stable on a long term, there exist short episodes of desynchronisation where nearby climate trajectories diverge temporarily (for about 50 kyr). As the attracting trajectory can sometimes lie close to the boundary of its basin of attraction, a small perturbation could quite easily make climate to jump between different histories, reducing the predictability. Our study brings new insight into paleoclimate dynamics and reveals a possibility for the climate system to wander throughout different climatic histories related to preferential synchronisation regimes on obliquity, precession or combinations of both, all over the history of the Pleistocene.  相似文献   

19.
A new three-dimensional dynamics and electrification coupled model has been developed forinvestigating the characteristics of microphysics,dynamics and electrification insidethunderstorms.This model is basically modified from a three-dimensional,time-dependent,anddual-parameter cloud model originally established in IAP(Institute of Atmospheric Physics)and atwo-dimensional axisymmetric cloud dynamics and electrification coupled model.Primarymodifications to the model include not only the coupling of electrification with dynamical andmicrophysical processes,but also the lightning discharge process and screening layer effect at thecloud top as well.Apart from including a full treatment of small ions with attachment to sixclasses of hydrometeors,the inductive and non-inductive charging mechanisms are more specificallyconsidered.A case simulation of July 19.1981 CCOPE is performed aiming to validate thepotential capability of the model.Comparison between model results and observations reveals thatthe model has the capacity to reproduce many of the observed characteristics of thunderstorms indynamical,microphysical,and electrical aspects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号