首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Planetary models for Jupiter and Saturn are computed using a fourth-order theory and a new molecular equation of state. The equation of state for the molecular hydrogen and helium planetary envelopes is taken from the Monte Carlo calculations of Slattery and Hubbard [Icarus 29, 187–192 (1976)]. Models for Jupiter are found that have a small amount of heavy elements either mixed with hydrogen and helium throughout the interior of the planet or concentrated in a small dense core. Saturn is modeled with a solar-composition hydrogen and helium envelope and a small derse core. We conclude that the molecular equation of state linked with suitable interior equations of state can produce Jovian models which satisfy the observational data. The planetary models show that the enrichment of heavy elements (relative to solar composition) is approximately 3 times for Jupiter and 10 times for Saturn.  相似文献   

2.
We investigate specific models for a dark energy universe leading to Quasi-Rip and Pseudo-Rip cosmologies. In the Quasi-Rip model the equation of state parameter w is less than ?1 in the first stage, but becomes larger than ?1 in the second stage. In the Pseudo-Rip model the Hubble parameter tends to a constant value in the remote future, although w is always less than ?1. Conditions for the appearance of the Quasi-Rip and the Pseudo-Rip in terms of the parameters in the equation of state are determined. Analogies with the theory of viscous cosmology are discussed.  相似文献   

3.
The singularity for the big bang state can be represented using the generalized anisotropic Friedmann equation, resulting in a system of differential equations in a central force field. We study the regularizability of this singularity as a function of a parameter, the equation of state, w. We prove that for w > 1 it is regularizable only for w satisfying relative prime number conditions, and for w ≤ 1 it can always be regularized. This is done by using a McGehee transformation, usually applied in the three and four-body problems. This transformation blows up the singularity into an invariant manifold. The relationship of this result to other cosmological models is briefly discussed.  相似文献   

4.
In this paper, we investigate the behavior of equation of state parameter and energy density for dark energy in the framework of f(T) gravity. For this purpose, we use anisotropic LRS Bianchi type I universe model. The behavior of accelerating universe is discussed for some well-known f(T) models. It is found that the universe takes a transition between phantom and non-phantom phases for f(T) models except exponential and logarithmic models. We conclude that our results are relativity analogous to the results of FRW universe.  相似文献   

5.
This paper examines the gravitational collapse in plane symmetry with a perfect fluid using a linear equation of state p=. We find a class of collapse models satisfying the Einstein field equations and also the regularity as well as energy conditions. For a given initial data, the outcome of the collapse turns out to be a black membrane or a naked singularity depending upon the equation of state parameter. We conclude that this parameter plays a crucial role in determining the final fate of the collapse.  相似文献   

6.
In this paper we study the interaction between the general form of viscous varying modified cosmic Chaplygin gas and the Tachyon fluid in the framework of Einstein gravity. We want to reconstruct the Tachyon potential and total equation of state parameter graphically by using numerical methods. In the presence of deceleration parameter, the interaction between components becomes sign changeable to explain different evolutionary eras in the universe. We review the potential and total equation of state parameter in Emergent, Intermediate and Logamediate scenarios of scale factor numerically. Analysis of total equation of state parameter show that, ω tot <?1 and ω tot >?1 imply the phantom-like and quintessence-like behaviors respectively. we have checked the effects of cosmic and viscosity elements on the interaction process. Stability is checked in all the models by the squared velocity of sound.  相似文献   

7.
Om diagnostic is a useful geometric method to differentiate between different cosmological models without the accurate current value of matter density. We investigate the Om diagnostic for viscous Cardassian universe and find that the model can be easily distinguished from LCDM. We also investigate the influence of the bulk viscosity coefficient τ on the evolutive behavior of Om with respect to redshift z. According to the value of Om(z=0) for viscous Cardassian models, we obtain the current value of equation of state w k0.  相似文献   

8.
We consider a self-consistent system of Bianchi type-V cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=γ ρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein equations are obtained as a quadrature. The cases of disordered radiation and models with power-law and exponential expansion have discussed in detail. For large t, the models tend to be isotropic.  相似文献   

9.
The interior of giant planets can give valuable information on formation and evolution processes of planetary systems. However, the interior and evolution of Uranus and Neptune is still largely unknown. In this paper, we compare water-rich three-layer structure models of these planets with predictions of shell structures derived from magnetic field models. Uranus and Neptune have unusual non-dipolar magnetic fields contrary to that of the Earth. Extensive three-dimensional simulations of Stanley and Bloxham (Stanley, S., Bloxham, J. [2004]. Nature 428, 151-153) have indicated that such a magnetic field is generated in a rather thin shell of at most 0.3 planetary radii located below the H/He rich outer envelope and a conducting core that is fluid but stably stratified. Interior models rely on equation of state data for the planetary materials which have usually considerable uncertainties in the high-pressure domain. We present interior models for Uranus and Neptune that are based on ab initio equation of state data for hydrogen, helium, and water as the representative of all heavier elements or ices. Based on a detailed high-pressure phase diagram of water we can specify the region where superionic water should occur in the inner envelope. This superionic region correlates well with the location of the stably-stratified region as found in the dynamo models. Hence we suggest a significant impact of the phase diagram of water on the generation of the magnetic fields in Uranus and Neptune.  相似文献   

10.
Specific dark energy models with linear inhomogeneous time-dependent equation of state, within the framework of 4d Friedman-Robertson-Walker (FRW) cosmology, are investigated. It is demonstrated that the choice of such 4d inhomogeneous fluid models may lead to a brane FRW cosmology without any explicit account of higher dimensions at all. Effectively, we thus obtain a brane dark energy universe without introducing the brane concept explicitly. Several examples of brane Rip cosmology arising from 4d inhomogeneous dark fluid models are given.  相似文献   

11.
We consider generalized teleparallel gravity in the flat FRW universe with a viable power-law f(T) model. We construct its equation of state and deceleration parameters which give accelerated expansion of the universe in quintessence era for the obtained scale factor. Further, we develop correspondence of f(T) model with scalar field models such as, quintessence, tachyon, K-essence and dilaton. The dynamics of scalar field as well as scalar potential of these models indicate the expansion of the universe with acceleration in the f(T) gravity scenario.  相似文献   

12.
The scaling of the apparent angular diameter of galaxies with redshift θ(z) is a powerful discriminator of cosmological models. In this paper we argue that the rotational velocity of distant galaxies, when interpreted as size indicator, may be used as an interesting tool to select high redshift standard rods. Upcoming deep redshift surveys will allow an implementation of this classical geometrical test to measure directly the amplitude of the cosmological constant Λ, or to constrain the cosmic equation of state parameter for a smooth dark energy component (w = p/ρ, —1 ≤ w < 0).  相似文献   

13.
In the present article we construct physically viable models of anisotropic charged compact stellar objects admitting quadratic equation of state and linear equation of state. We analyze the physical behavior of compact star models 4U1538-52, LMCX-4, and Vela X-1 with in the frame work of general relativity. Our stellar models are free from singularities, satisfy all energy conditions and exhibit physically admissible characters. The necessary stability criteria viz. Buchdhal condition, adiabatic index and causality condition all stand true for our charged anisotropic compact stellar models. We also inspect the physical characteristics of compact stars via Linear equation of state by applying slight changes in the parameters of the models pertaining to Quadratic equation of state and analyze the models in the perspective of both equations of state. We study the physical attributes of the model 4U1538-52 extensively by implementing analytical and graphical tools. The models retain their validity for both linear as well as quadratic equations of state, however there is a slight variation in few attributes of the models.  相似文献   

14.
Considering power-law for of scale factor in a flat FRW universe we reported a reconstruction scheme for f(G) gravity based on QCD ghost dark energy. We reconstructed the effective equation of state parameter and observed “quintessence” behavior of the equation of state parameter. Furthermore, considering dynamical apparent horizon as the enveloping horizon of the universe we have observed that the generalized second law of thermodynamics is valid for this reconstructed f(G) gravity.  相似文献   

15.
Recent spectroscopic data pointing to low heavy-element abundances Z pose a severe problem for solar-structure modeling. The low-Z abundances imply a lower opacity and a relatively shallow convective zone, both of which are in obvious contradiction with the observed helioseismic sound-speed profile. This paper presents a series of solar models with different heavy-element abundances. The SAHA-S equation of state and OPAL opacities properly take into account the respective heavy-element abundances. Diffusion of individual elements is also included in the models. Sound-speed profiles are compared with inversion results and it is shown that the models with low Z are in disagreement with the inversion data. Even combining the effect of diffusion, overshooting and mixing for the sound-speed profile did not lead to a solution of the low-Z problem. Models with varied neon abundance have also been computed. It turned out that a substantial increase of the neon abundance could produce a model in agreement with the sound-speed inversion but the required abundance increase would be unrealistic. The effect of the neon enhancement on the adiabatic exponent profile in the convection zone is also presented.  相似文献   

16.
Statefinder diagnostic is a useful method which can differ one dark energy model from the others. The Statefinder pair {r,s} is algebraically related to the equation of state of dark energy and its first time derivative. We apply in this paper this method to the dilaton dark energy model based on Weyl-Scaled induced gravitational theory. We investigate the effect of the coupling between matter and dilaton when the potential of dilaton field is taken as the Mexican hat form. We find that the evolving trajectory of our model in the r?s diagram is quite different from those of other dark energy models.  相似文献   

17.
This study set out to examine the effect of anisotropy on the various dark energy models by using the observational data, including the Sandage-Loeb test, Strongly gravitationally lensing, observational Hubble data, and Baryon Acoustic Oscillations data. In particular, we consider three cases of dark energy models: the cosmological constant model, which is most favored by current observations, the wCDM model where dark energy is introduced with constant w equation of state parameter and in Chevalier-Polarski-Linder parametrization where ω is allowed to evolve with redshift. With an anisotropy framework, a maximum likelihood method to constrain the cosmological parameters was implemented. With an anisotropic universe, we also study the behavior of different cosmological parameters such as Hubble parameter, EoS parameter, and deceleration parameter of dark energy models mentioned. The results indicate that the Bianchi type I model for the dark energy models are consistent with the combined observational data.  相似文献   

18.
19.
20.
Motivated by the recent work of Rastkar et al. (in Astrophys. Space Sci. 337:487, 2012) the present study has attempted to study the role of f(G) gravity in the emergent universe. Different energy conditions are examined for the effective energy density and violation of strong energy condition is observed. Also, the behavior of the equation of state parameter is studied for the effective energy density and dark energy density. It is found that the equation of state parameter behaves like phantom in both of the cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号