首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Atacama Large Millimeter/submillimeter Array, ALMA, combines a large collecting area, very sensitive receivers and a location on a high dry site. ALMA’s sensitivity for continuum measurements is increased with the added feature of an 8 GHz instantaneous bandwidth. Taken together, these four factors provide unparalleled sensitivity in the millimeter/submillimeter wavelength range. With its great sensitivity and angular resolution, ALMA will transform our view of mm/sub-mm astronomy.  相似文献   

2.
Thermal observations of large asteroids at millimeter wavelengths have revealed high amplitude rotational lightcurves. Such lightcurves are important constraints on thermophysical models of asteroids, and provide unique insight into the nature of their surface and subsurface composition. A better understanding of asteroid surfaces provides insight into the composition, physical structures, and processing history of these surviving remnants from the formation of our solar system. In addition, detailed observations of the larger asteroids, accompanied by thermophysical models with appropriate temporal and spatial resolution, promise to decrease uncertainties in their flux predictions. Of particular interest are the near-Earth objects, which can be observed at large phase angles, permitting better assessment of the thermal response of their unilluminated surfaces. The high sensitivity of ALMA will enable us to detect many small bodies in all the major groups, to obtain lightcurves for a large sample of main-belt and near-Earth objects, to resolve the surfaces of some large objects, and to separate the emission from primary and secondary objects in binary pairs. In addition to the science goals of asteroid studies, these bodies may also prove useful operationally because those with known shapes and well-characterized lightcurves could be employed for flux calibration by ALMA and other high frequency instruments.  相似文献   

3.
James C. Granahan 《Icarus》2011,213(1):265-272
On October 29, 1991 the Galileo spacecraft encountered Asteroid 951 Gaspra with a telescopic CCD camera and a near infrared mapping spectrometer that provided the first optically resolved views of any asteroid. Data from these two sensors were combined to detect the spectral signature of iron bearing minerals on this S-type asteroid. A minimum of two spectral units were identified on 951 Gaspra, both containing a higher relative abundance of olivine than those found in ordinary chondrites. These data indicate that this S asteroid is an object that has undergone igneous differentiation processes. A 2.7 μm spectral feature was also detected on the surface of 951 Gaspra and may be due to the presence of structural OH.  相似文献   

4.
J.F. Bell III  T.M. Ansty 《Icarus》2007,191(2):581-602
We acquired high spectral and spatial resolution hyperspectral imaging spectrometer observations of Mars from near-UV to near-IR wavelengths (∼300 to 1020 nm) using the STIS instrument on the Hubble Space Telescope during the 1999, 2001, and 2003 oppositions. The data sets have been calibrated to radiance factor (I/F) and map-projected for comparison to each other and to other Mars remote sensing measurements. We searched for and (where detected) mapped a variety of iron-bearing mineral signatures within the data. The strong and smooth increase in I/F from the near-UV to the visible that gives Mars its distinctive reddish color indicates that poorly crystalline ferric oxides dominate the spectral properties of the high albedo regions (as well as many intermediate and low albedo regions), a result consistent with previous remote sensing studies of Mars at these wavelengths. In the near-IR, low albedo regions with a negative spectral slope and/or a distinctive ∼900 nm absorption feature are consistent with, but not unique indicators of, the presence of high-Ca pyroxene or possibly olivine. Mixed ferric-ferrous minerals could also be responsible for the ∼900 nm feature, especially in higher albedo regions with a stronger visible spectral slope. We searched for the presence of several known diagnostic absorption features from the hydrated ferric sulfate mineral jarosite, but did not find any unique evidence for its occurrence at the spatial scale of our observations. We identified a UV contrast reversal in some dark region spectra: at wavelengths shorter than about 340 nm these regions are actually brighter than classical bright regions. This contrast reversal may be indicative of extremely “clean” low albedo surfaces having very little ferric dust contamination. Ratios between the same regions observed during the planet-encircling dust storm of 2001 and during much clearer atmospheric conditions in 2003 provide a good direct estimate of the UV to visible spectral characteristics of airborne dust aerosols. These HST observations can help support the calibration of current and future Mars orbital UV to near-IR spectrometers, and they also provide a dramatic demonstration that even at the highest spatial resolution possible to achieve from the Earth, spectral variations on Mars at these wavelengths are subtle at best.  相似文献   

5.
Atacama Large Millimetre/sub-millimetre Array(ALMA) observations of CO(1–0) and CO(2–1) emissions from the circumstellar envelope of the asymptotic giant branch(AGB) star EP Aqr have been made with four times better spatial resolution than previously available. They are analysed with emphasis on the de-projection in space of the effective emissivity and flux of matter using as input a prescribed configuration of the velocity field, assumed to be radial. The data are found to display an intrinsic axisymmetry with respect to an axis making a small angle with respect to the line of sight. A broad range of wind configurations, from prolate(bipolar) to oblate(equatorial) has been studied and found to be accompanied by significant equatorial emission. Qualitatively, the effective emissivity is enhanced near the equator to produce the central narrow component observed in the Doppler velocity spectra and its dependence on star latitude generally follows that of the wind velocity with the exception of an omni-present depression near the poles. In particular, large equatorial expansion velocities produce a flared disc or a ring of effective emissivity and mass loss. The effect on the determination of the orientation of the star axis of radial velocity gradients, and possibly competing rotation and expansion in the equatorial disc, is discussed. In general,the flux of matter is found to reach a broad maximum at distances of the order of 500 AU from the star.Arguments are given that may be used to favour one wind velocity distribution over another. As a result of the improved quality of the data, a deeper understanding of the constraints imposed on morphology and kinematics has been obtained.  相似文献   

6.
RecentR-matrix calculations of electron impact excitation rates in Ov are used to derive the emission line intensity ratios (in energy units) $$\begin{gathered} R_1 = I(2s2p^{ 3} P - 2p^{2 3} P)/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(761.1\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ R_2 = I(2s^{2 1} S_0 - 2s2p^{ 3} P_1 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(1218.4\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ \end{gathered} $$ and $$R_3 = I(2s2p^{ 1} P_1 - 2p^{2 1} S_0 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(774.5\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ )$$ as a function of electron temperature (T e) and density (N e). These results are presented as plots ofR 1 vsR 2, andR 1 vsR 3, which should allowboth N e andT e to be deduced for the Ov line emitting region of a plasma. Electron densities derived from the (R 1,R 2) and (R 1,R 3) diagrams in conjunction with observational data for several solar features obtained with the Harvard S-055 spectrometer on boardSkylab are found to be compatible, and in good agreement with values ofN e estimated from line ratios in species formed at similar electron temperatures to Ov. In addition, values ofT e determined from (R 1,R 2) and (R 1,R 3) are generally close to that expected theoretically. These results provide experimental support for the accuracy of the diagnostic calculations presented in this paper, and hence the atomic data used in their derivation.  相似文献   

7.
The electron collision excitation rates recently calculated for transitions in Si xiii by Keenan et al. (1987) are used to derive the electron temperature sensitive ratio G(=(f + i)/r and the density sensitive ratio R(=f/i), where i, f, and r are the intercombination (1s 2 1 S – 1s2p 3 P 1, 2) forbidden (1s 2 1 S – 1s2s 3 S), and resonance (1s 2 1 S – 1s2p 1 P), transitions respectively. Also estimated are the values of R in the low-density limit (R 0) as a function of electron temperature. The theoretical G ratio at the temperature of maximum emissivity for Si xiii, G(T m) = 0.70, is in much better agreement with the observed G for the 1985, May 5 flare determined by McKenzie et al. (G = 0.60 ± 0.07) than is the earlier calculation of Pradhan, who derived G(T m) = 0.85. The error in the observed R 0 ratio is so large that both our result and Pradhan's fall within the acceptable limits of uncertainty and hence one cannot estimate which of the two is the more accurate.  相似文献   

8.
Planetary nebulae (PNe) are formed in a very fast process. In just about 1000 years, the nebula evolves from a spherical and slowly expanding AGB envelope to a PN, with usually axial symmetry and high axial velocities. Molecular lines are known to probe most of the nebular material in young PNe and protoplanetary nebulae (PPNe), and are therefore very useful to study such an impressive evolution. Many quantitative results on these objects have been so obtained, including general structure, total mass and density distribution, kinetic temperatures, velocity fields, etc. Existing observations probe both the gas accelerated by post-AGB shocks and the quiescent components. But the study of crucial regions to understand PN formation (recently shocked shells, regions heated by the stellar UV and inner rotating disks) requires observations at higher frequency and with better spatial resolution.   相似文献   

9.
Near-infrared (∼0.7 to ∼2.5 μm) spectra of S-asteroids 138 Tolosa, 306 Unitas, 346 Hermentaria, and 480 Hansa suggest the presence of variable amounts of orthopyroxene ± clinopyroxene ± olivine ± plagioclase feldspar on the surfaces of these asteroids. The spectra of these asteroids were compared to laboratory mineral mixtures of orthopyroxene, clinopyroxene, and olivine [Singer, R.B., 1981. J. Geophys. Res. 86 (B9), 7967-7982; Cloutis, E.A., 1985. Master's thesis]. The band parameters (band centers, band areas) were quantified and temperature-corrected [Moroz et al., 2000. Icarus 147, 79-93; Gaffey et al., 2002. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III. The University of Arizona Press, Tucson, pp. 183-204]. Each S-asteroid in this paper exhibits an overall spectral shape with band parameters that are inconsistent with ordinary chondrite near-infrared spectra and their inferred mineral abundances and/or pyroxene chemistries. 138 Tolosa displays a complex spectrum with a broad ∼1 μm absorption feature that displays a double Band I minimum, a well-defined absorption at ∼1.3 μm, and a broad, but weak absorption in the ∼2 μm region. Although different interpretations exist, the Tolosa spectrum is most consistent with a ∼60/40 mixture of Type B clinopyroxene and orthopyroxene. Spectra of 306 Unitas suggest a surface with variable amounts of low-Ca pyroxene and olivine. Unitas is located in the S-(IV) and S-(VI) subtype regions in Gaffey et al. [1993. Icarus 106, 573-602]. 346 Hermentaria exhibits a complex, broad Band I absorption feature and a weak Band II feature, which suggests a ∼50/50 mixture of clinopyroxene and orthopyroxene. Hermentaria is classified as an S-(III). Spectra of 480 Hansa suggest a dominant low-Ca pyroxene component with lesser amounts of olivine. Based on these characterizations, these four S-asteroids should not be considered as potential ordinary chondrite parent bodies. Furthermore, these results suggest that these S-asteroids experienced at least partial melting temperatures [T?∼950 °C: Gaffey et al., 1993. Icarus 106, 573-602; Keil, K., 2000. Planet. Space Sci. 48, 887-903] during the formation epoch in the early Solar System. Continuing spectroscopic investigations will discern the relative abundance of chondritic and thermally-evolved objects among the S-type asteroids that have survived since the formation epoch ∼4.56 billion years ago.  相似文献   

10.
High resolution spectra of the coronal emission line Fe xiv at 530.3 nm obtained at the 30 May 1965 total solar eclipse are analyzed and interpreted. Deconvolution techniques that preserve the line intensity vs wavelength profile shape are developed to obtain further resolution improvement. The west limb coronal enhancement is determined to have temperatures less than 3 MK and turbulent velocities of ~25 km s-1 decreasing with altitude. Temperature gradients provide evidence for marginal solar wind flow from this enhancement. Above the quiet photosphere in the southwest quadrant the comparison of line and continuum intensities and consideration of line width suggest to us the coronal region is filled with inhomogeneous plasma, dense enough in localized regions to maintain collisional excitation. Solar wind flow from this region obtains when turbulent velocities are assumed to contribute to the line broadening. We identify this region as a coronal hole and suggest that coronal material is heated by the quiet photosphere below.  相似文献   

11.
F. P. Keenan 《Solar physics》1991,131(2):291-296
Theoretical electron-temperature-sensitive Ne vii emission line ratios, calculated using accurate R-matrix electron impact excitation rates, are presented for R 1 = I(895.2 Å)/I(465.2 Å), R 2 = I(561.7 Å)/I(465.2 Å) and R 3 = I(564.5 Å)/I(465.2 Å). A comparison of these with observational data for several solar features obtained with the Harvard S-055 spectrometer on board Skylab reveals good agreement between theory and experiment. This provides observational support for the accuracy of the atomic physics adopted in the calculations, and the methods employed in the derivation of the theoretical diagnostics.  相似文献   

12.
We present the results of a campaign of spectroscopic observations of Jupiter Trojan asteroids. Thirty-four objects were observed during three runs in July and November 1998, and March 2002 using the Danish 1.54-m telescope at ESO. The covered spectral range was between 5000 and 9000 Å. Our observations include objects belonging both L4 to L5 clouds. According to analyses of previous investigations of Trojans, the spectra of different taxonomic classes can be separated on the basis of the slope of the reflectance spectrum. The large majority of the objects of our sample have been found to belong to the D taxonomic class, but we found also objects of P- and C-type. In two cases, we found also evidence of blueish spectral trends. Our data are important, since they allow us to substantially enlarge the whole data set of available Trojan spectra.  相似文献   

13.
The recent level population calculations for Ne v by Aggarwal are used to determine the theoretical emission line ratios R 1 = I(2s2p 3 1Do - 2s22p2 1De)/I(2s2p3 3D 2 0 - 2s22p2 3P 1 e ) and R 2 = I(2s2p 3 1Do-2s22p2 1De)/I(2s2p 3 3D 3 0 -2s22p2 3P 2 e ). A comparison of these with observational data for a solar flare and erupting prominence obtained with the NRL XUV spectrograph on board Skylab reveals that R 1 and R 2 are in their predicted high density limits. Although the ratios cannot be used as density diagnostics for values of n e typical of the solar transition region, it is shown that they are temperature sensitive and hence may be employed to determine the electron temperatures of Ne v line emitting regions.  相似文献   

14.
15.
Curve fitting techniques are a widespread approach to spectral modeling in the VNIR range [Burns, R.G., 1970. Am. Mineral. 55, 1608-1632; Singer, R.B., 1981. J. Geophys. Res. 86, 7967-7982; Roush, T.L., Singer, R.B., 1986. J. Geophys. Res. 91, 10301-10308; Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. J. Geophys. Res. 95, 6955-6966]. They have been successfully used to model reflectance spectra of powdered minerals and mixtures, natural rock samples and meteorites, and unknown remote spectra of the Moon, Mars and asteroids. Here, we test a new decomposition algorithm to model VNIR reflectance spectra and call it Exponential Gaussian Optimization (EGO). The EGO algorithm is derived from and complementary to the MGM of Sunshine et al. [Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. J. Geophys. Res. 95, 6955-6966]. The general EGO equation has been especially designed to account for absorption bands affected by saturation and asymmetry. Here we present a special case of EGO and address it to model saturated electronic transition bands. Our main goals are: (1) to recognize and model band saturation in reflectance spectra; (2) to develop a basic approach for decomposition of rock spectra, where effects due to saturation are most prevalent; (3) to reduce the uncertainty related to quantitative estimation when band saturation is occurring. In order to accomplish these objectives, we simulate flat bands starting from pure Gaussians and test the EGO algorithm on those simulated spectra first. Then we test the EGO algorithm on a number of measurements acquired on powdered pyroxenes having different compositions and average grain size and binary mixtures of orthopyroxenes with barium sulfate. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of saturation effects on reflectance spectra of powdered minerals and mixtures; (2) the systematic dilution of a strong absorber using a bright neutral material is not responsible for band deformation. Further work is still required in order to analyze the behavior of the EGO algorithm with respect to the saturation phenomena using more complex band shapes than pyroxene bands.  相似文献   

16.
Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us: (i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); (ii) to investigate the chemical composition of comets; (iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei.Comets are classified from their orbital characteristics into two separate classes: (i) nearly isotropic, mainly long-period comets and (ii) ecliptic, short-period comets, the so-called Jupiter-family comets (JFCs). These two classes apparently come from two different reservoirs, respectively, the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and—possibly—their different origin, they may have different chemical and physical properties that are worth being investigated.The present article reviews the contribution of radio observations to our knowledge of the JFCs. The difficulty of such a study is the commonly low gas and dust productions of these comets. Long-period, nearly isotropic comets from the Oort cloud are better known from Earth-based observations. On the other hand, JFCs are more easily accessed by space missions. However, unique opportunities to observe JFCs are offered when these objects come by chance close to the Earth (like 73P/Schwassmann-Wachmann 3 in 2006), or when they exhibit unexpected outbursts (as did 17P/Holmes in 2007).About a dozen JFCs were successfully observed by radio techniques up to now. Four to ten molecules were detected in five of them. No obvious evidence for different properties between JFCs and other families of comets is found, as far as radio observations are concerned.  相似文献   

17.
The present investigation is complementary to a previous paper which introduced the EGO approach to spectral modelling of reflectance measurements acquired in the visible and near-IR range (Pompilio, L., Pedrazzi, G., Sgavetti, M., Cloutis, E.A., Craig, M.A., Roush, T.L. [2009]. Icarus, 201 (2), 781-794). Here, we show the performances of the EGO model in attempting to account for temperature-induced variations in spectra, specifically band asymmetry.Our main goals are: (1) to recognize and model thermal-induced band asymmetry in reflectance spectra; (2) to develop a basic approach for decomposition of remotely acquired spectra from planetary surfaces, where effects due to temperature variations are most prevalent; (3) to reduce the uncertainty related to quantitative estimation of band position and depth when band asymmetry is occurring.In order to accomplish these objectives, we tested the EGO algorithm on a number of measurements acquired on powdered pyroxenes at sample temperature ranging from 80 up to 400 K. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of band asymmetry on reflectance spectra; (2) the returned set of EGO parameters can suggest the influence of some additional effect other than the electronic transition responsible for the absorption feature; (3) the returned set of EGO parameters can help in estimating the surface temperature of a planetary body; (4) the occurrence of absorptions which are less affected by temperature variations can be mapped for minerals and thus used for compositional estimates.Further work is still required in order to analyze the behaviour of the EGO algorithm with respect to temperature-induced band asymmetry using powdered pyroxene spanning a range of compositions and grain sizes and more complex band shapes.  相似文献   

18.
Ultraviolet spectral reflectance properties (200-400 nm) of a large number of minerals known or presumed to exist on the surfaces of Mars, the Moon, and asteroids, and in many meteorites, were investigated. Ultraviolet reflectance spectra (200-400 nm) of these minerals range from slightly blue-sloped (reflectance decreasing toward longer wavelengths) to strongly red-sloped (reflectance increasing toward longer wavelengths). Most exhibit one or two absorption features that are attributable to FeO charge transfers involving Fe3+ or Fe2+. The UV region is a very sensitive indicator of the presence of even trace amounts (<0.01 wt%) of Fe3+ and Fe2+. The major Fe3+O absorption band occurs at shorter wavelengths (∼210-230 nm), and is more intense than the major Fe2+O absorption band (∼250-270 nm). Ti-bearing minerals, such as ilmenite, rutile and anatase exhibit UV absorption bands attributable to Ti4+O charge transfers. While the positions of metal-O charge transfer bands sometimes differ for different minerals, the variation is often not diagnostic enough to permit unique mineral identification. However, iron oxides and oxyhydroxides can generally be distinguished from Fe-bearing silicates in the 200-400 nm region on the basis of absorption band positions. Within a given mineral group (e.g., low-calcium pyroxene, olivine, plagioclase feldspar), changes in Fe2+ or Fe3+ abundance do not appear to result in a measurable change in absorption band minima positions. Absorption band positions can vary as a function of grain size, however, and this variation is likely due to band saturation effects. The intensity of metal-O charge transfers means that some minerals will exhibit saturated UV absorption bands even for fine-grained (<45 μm) powders. In cases where absorption bands are not saturated (e.g., Fe2+O bands in some plagioclase feldspars and pyroxenes), changes in Fe2+ content do not appear to cause variations in band position. In other minerals (e.g., olivine), changes in band positions are correlated with compositional and/or grain size variations, but this is likely due to increasing band saturation rather than compositional variations. Overall, we find that the UV spectral region is sensitive to different mineral properties than longer wavelength regions, and thus offers the potential to provide complementary capabilities and unique opportunities for planetary remote sensing.  相似文献   

19.
A comparison of Skylab S082A observations for several solar flares with calculations of the electron temperature sensitive emission line ratio R 1 = I(2s2p 1 P – 2s 2 1 S)/I(2s2p 3 P 1 - 2s 2 1 S) = = I(256.68 Å)/I(491.45 Å) in Be-like SXIII reveals good agreement between theory and experiment, which provides observational support for the accuracy of the adopted atomic data. However, observed values of the electron density sensitive ratio R 2 = I(2s2p 1 P – 2s 2 1 S)/I(2p 2 3 P 2 - 2s2p 3 P 2) = = I(256.68 Å)/I(308.96 Å) all lie below the theoretical high density limit, which is probably due to blending in the 308.96 Å line.  相似文献   

20.
We present near-infrared spectral measurements of Themis family Asteroid (379) Huenna (D ∼ 98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5″ from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 μm and a low slope, characteristic of C-type asteroids. The secondary’s spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary’s spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号