首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PSR J1833−1034 and its associated pulsar wind nebula (PWN) have been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low-energy X-ray data from Chandra reveal a complex morphology that is characterized by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from  Γ= 1.61  in the central region to  Γ= 2.36  at the edge of the PWN. At higher energy, INTEGRAL detected the source in the 17–200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent High Energy Stereoscopic System (HESS) observations in the high-energy gamma-ray domain show that PSR J1833−1034 is a bright TeV emitter, with a flux corresponding to ∼2 per cent of the Crab in 1–10 TeV range. In addition, the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL . Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor  γ∼ 109  in a magnetic field of ∼10 μG. In this hypothesis, the TeV emission is due to inverse-Compton interaction of the cooled electrons off the cosmic microwave background photons. Search for PSR J1833−1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.  相似文献   

2.
We investigate the effects of inverse Compton scattering by electrons and positrons in the unshocked winds of rotationally-powered binary pulsars. This process can scatter low energy target photons to produce gamma rays with energies from MeV to TeV. The binary radio pulsars PSR B1259−63 and PSR J0045−73 are both in close eccentric orbits around bright main sequence stars which provide a huge density of low energy target photons. The inverse Compton scattering process transfers momentum from the pulsar wind to the scattered photons, and therefore provides a drag which tends to decelerate the pulsar wind. We present detailed calculations of the dynamics of a pulsar wind which is undergoing inverse Compton scattering, showing that the deceleration of the wind of PSR B1259−63 due to ‘inverse Compton drag' is small, but that this process may confine the wind of PSR J0045−73 before it attains pressure balance with the outflow of its companion star. We calculate the spectra and light curves of the resulting inverse Compton emission from PSR B1259−63 and show that if the size of the pulsar wind nebula is comparable to the binary separation, then the γ-ray emission from the unshocked wind may be detectable by atmospheric Cherenkov detectors or by the new generation of satellite-borne γ-ray detectors such as INTEGRAL and GLAST. This mechanism may therefore provide a direct probe of the freely-expanding regions of pulsar winds, previously thought to be invisible.  相似文献   

3.
The mechanism of the large-scale magnetic field generation in the Crab Nebula is proposed. The basis for the considered fast mechanism is the model of the central region of Crab Nebula amorphous part having the form of slightly divergent double-layer disk consisting of the relativistic electron-positron plasma.The nebula toroidal magnetic field generation occurs in the double-layer disk in the immediate neighbourhood of the light cylinder of pulsar PSR 0531+21 due to the differential rotation by means of dynamo-mechanism. The generated field is transferred into the nebula by the pulsar wind which forms the double-layer disk.By use of the known parameters of pulsar PSR 0531+21, the considered mechanism yields the strength of magnetic fieldB=10–3 G observed in the nebula. The disk structure must be destroyed toward the edges of the nebula.  相似文献   

4.
We present the results of a search for X-ray emission in the energy range 0.2–0.28 keV and 1–7 keV from a number of radio pulsars, including Crab, Vela and the binary pulsar PSR 1913+16, using the soft X-ray experiment aboard ANS. Except for the Crab no pulsed flux has been found. From the Vela pulsar we have detected continuous flux in agreement with earlier observations. Upper limits are given.Paper presented at the COSPAR Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

5.
We present an X-ray timing analysis of the Crab pulsar, PSR B0531+21, using archival RXTE data. We have investigated the stability of the Crab pulse profile, in soft (2-20 keV) and hard (30-100 keV) X-ray energies, over the last decade of RXTE operation. The analysis includes measurement of the separation between the two pulse peaks and the intensity and widths of the two peaks. We did not find any significant time dependency in the pulse shape. The two peaks have been stable in phase, intensity and width f...  相似文献   

6.
We present X-ray data of the middle-aged radio pulsar PSR B0355+54. The XMM-Newton and Chandra observations show not only emission from the pulsar itself, but also compact diffuse emission extending ∼50″ in the opposite direction to the pulsar’s proper motion. Our analysis also indicates the presence of fainter diffuse emission extending ∼5′ from the point source. The morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources. We find that the compact diffuse component is well-fitted with a power-law, with an index that is consistent with the values found for other pulsar wind nebulae. The core emission from the pulsar can be characterized with a thermal plus power-law fit, with the thermal emission most likely originating in a hot polar cap.  相似文献   

7.
Astronomy Letters - The emission from the Crab nebula exhibits a significant gamma-ray variability. In this paper we have analyzed this variability in terms of periodicity. Using the pulsar...  相似文献   

8.
Two investigations of millisecond pulsar radiation are discussed: average total intensity pulse morphology and individual pulse to pulse fluctuations. The average emission profiles of millisecond pulsars are compared with those of slower pulsars in the context of polar cap models. In general the full widths of pulsar emission regions continue to widen inversely with periodP as P-(0.30-0.5) as expected for dipole polar cap models. Many pulse components are very narrow. The period scaling of pulsar profiles -separations and widths -can tell us about the angular distribution of radiating currents. An investigation of individual pulses from two millisecond pulsars at 430 MHz shows erratic pulse to pulse variations similar to that seen in slow pulsars. PSR B1937+21 displays occasional strong pulses that are located in the trailing edge of the average profile with relative flux densities in the range of 100 to 400. These are similar to the giant pulses seen in the Crab pulsar.  相似文献   

9.
Giant pulses (GPs) have been detected from the pulsar PSR B0656 + 14. A pulse that is more intense than the average pulse by a factor of 120 is encountered approximately once in 3000 observed periods of the pulsar. The peak flux density of the strongest pulse, 120 Jy, is a factor of 630 higher than that of the average pulse. The GP energy exceeds the energy of the average pulse by up to a factor of 110, which is comparable to that for other known pulsars with GPs, including the Crab pulsar and the millisecond pulsar PSR B1937+21. The giant pulses are a factor of ~6 narrower than the average pulse and are clustered at the head of the average pulse. PSR B0656+14 along with PSR B0031-07, PSR B1112+50, and PSR J1752+2359 belong to a distinctive group of pulsars in which GPs have been detected without any extremely strong magnetic field on the light cylinder.  相似文献   

10.
Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (“TeV plerions”). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN “Rabbit” G313.3+0.1 which is possibly powered by a young pulsar.  相似文献   

11.
We investigate a stationary particle acceleration zone in the outer magnetosphere of an obliquely rotating neutron star. The charge depletion as a result of global current causes a large electric field along the magnetic field lines. Migratory electrons and/or positrons are accelerated by this field to radiate curvature gamma-rays, some of which collide with the X-rays to materialize as pairs in the gap. As a result of this pair-production cascade, the replenished charges partially screen the electric field, which is self-consistently solved together with the distribution of particles and gamma-rays. If no current is injected at either of the boundaries of the accelerator, the gap is located around the so-called null surface, where the local Goldreich–Julian charge density vanishes. However, we find that the gap position shifts outwards (or inwards) when particles are injected at the inner (or outer) boundary. We apply the theory to the seven pulsars whose X-ray fields are known from observations. We show that the gap should be located near to or outside of the null surface for the Vela pulsar and PSR B1951+32, so that their expected GeV spectrum may be consistent with observations. We then demonstrate that the intrinsically large TeV flux from the outer gap of PSR B0540–69 is absorbed by the magnetospheric infrared photons, causing it to be undetectable. We also point out that the electrodynamic structure and the resultant GeV emission properties of millisecond pulsars are similar to young pulsars.  相似文献   

12.
PSR B1259-63 is the only known binary system with a radio pulsar from which the non-pulsed radio and X-ray emission was detected. The companion star in this system is a Be star SS 2883. A rapidly rotating radio pulsar is expected to produce a wind of relativistic particles. Be stars are known to produce highly asymmetric mass loss. Due to the interaction of the pulsar wind and the Be star wind the system of two shocks between the pulsar and the Be star forms. In this paper we show that the observed non-pulsed radio emission from the system is a result of the synchrotron emission of the relativistic particles in the outflow beyond the shock wave and that the non-pulsed X-ray emission is due to the inverse Compton scattering of the Be star photons on this particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We report the discovery of a prominent non-thermal X-ray feature located near the Galactic centre that we identify as an energetic pulsar wind nebula. This feature, G359.95-0.04, lies 1-lyr north of Sgr A* (in projection), is comet like in shape, and has a power-law spectrum that steepens with increasing distance from the putative pulsar. The distinct spectral and spatial X-ray characteristics of the feature are similar to those belonging to the rare class of ram-pressure confined pulsar wind nebulae. The luminosity of the nebula at the distance of Sgr A*, consistent with the inferred X-ray absorptions, is   Lx ∼ 1 × 1034 erg s−1  in the 2–10 keV energy band. The cometary tail extends back to a region centred at the massive stellar complex IRS 13 and surrounded by an enhanced diffuse X-ray emission, which may represent an associated supernova remnant. Furthermore, the inverse Compton scattering of the strong ambient radiation by the nebula consistently explains the observed TeV emission from the Galactic centre. We also briefly discuss plausible connections of G359.95-0.04 to other high-energy sources in the region, such as the young stellar complexes IRS 13 and SNR Sgr A East.  相似文献   

14.
Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides a few allegedly rotation-powered neutron stars that showed ‘magnetar-like’ variability, a particularly interesting case is that of PSR B0943+10. Recent observations have shown that this pulsar, well studied in the radio band where it alternates between a bright and a quiescent mode, displays significant X-ray variations, anticorrelated in flux with the radio emission. The study of such synchronous radio/X-ray mode switching opens a new window to investigate the processes responsible for the pulsar radio and high-energy emission. Here we review the main X-ray properties of PSR B0943+10 derived from recent coordinated X-ray and radio observations.  相似文献   

15.
One of the intriguing aspects of supernova remnants is their morphology. While the majority of them look like hollow shells, a few, called plerions, are centrally filled like the Crab nebula, and some have a shell-plerion combination morphology. The centrally-filled component in these remnants is believed to be powered by a central pulsar. In this paper we present results of model calculations of the evolution of surface brightness and morphology of supernova remnants containing pulsars. We discuss how the morphology of a supernova remnant will depend on the velocity of expansion, the density of the ambient medium into which it is expanding, and the initial period and magnetic field strength of the central pulsar  相似文献   

16.
We present the results of a CCD monitoring campaign of the continuum emission from the central region of the Crab nebula, amounting to 17 epochs spread over 3.5 years. The data provide clear evidence that the brightest wisps move outward from the pulsar at mildly relativistic velocities. This motion, combined with the shape of the wisps, supports the idea that they arise at a standing shock in an equatorial wind. The deprojected velocity of the wisps in the equatorial plane is c/3. We see only small changes in the so-called ‘thin wisps’ which leads us to suggest that these wisps may be the result of a back-flow from the shock in a toroidal cavity around the pulsar.  相似文献   

17.
The general solution for the energy distribution of relativistic electrons in which electrons generated within the source diffuse and decay through synchrotron or Compton radiation is given for the case in which the magnetic field and the diffusion coefficient are constant. A very simple spherically symmetric model with an electron point-source at the centre is considered and the equations are explicitly solved. It is shown that notwithstanding its great simplicity this model gives a fair representation of the continuous emission of the Crab nebula from the radio to the X-ray region, with the simple assumption that it is due only to ordinary synchrotron radiation. If the central point source is identified with the pulsar there appears to be an upper limit of about 107 MeV to the energy of the electrons accelerated by the pulsar mechanism.  相似文献   

18.
The X-ray timing data for the Crab pulsar obtained by the Chinese X-ray pulsar navigation test satellite are processed and analyzed. The method to build the integrated and standard X-ray pulse profiles of the Crab pulsar by using the X-ray pulsar observation data and the satellite orbit data is described. The principle and algorithm for determining the pulsar's pulse time of arrival (toa) in the frequency domain are briefly introduced. The pulsar's pulse time of arrival is calculated by using the timing data of 50 min integration for each set of observational data. By the comparison between the observed Crab pulsar's pulse time of arrival at the solar system barycenter and that predicted with the Crab pulsar ephemeris, it is found that the timing accuracy is about 14 μs after the systematic error is removed by a quadratic polynomial fitting.  相似文献   

19.
The fast-spinning Crab pulsar (∼30 turn s−1), which powers the massive expansion and synchrotron emission of the entire Crab nebula, is surrounded by quasi-stationary features such as fibrous arc-like wisps and bright polar knots in the radial range of 2×1016≲ r ≲2×1017 cm, as revealed by high-resolution (∼0.1 arcsec) images from the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ). The spin-down energy flux (∼5×1038 erg s−1) from the pulsar to the luminous outer nebula, which occupies the radial range 0.1≲ r ≲2 pc, is generally believed to be transported by a magnetized relativistic outflow of an electron–positron e± pair plasma. It is then puzzling that mysterious structures like wisps and knots, although intrinsically dynamic in synchrotron emission, remain quasi-stationary on time-scales of a few days to a week in the relativistic pulsar wind. Here we demonstrate that, as a result of slightly inhomogeneous wind streams emanating from the rotating pulsar, fast magnetohydrodynamic (MHD) shock waves are expected to appear in the pulsar wind at relevant radial distances in the forms of wisps and knots. While forward fast MHD shocks move outward with a speed close to the speed of light c , reverse fast MHD shocks may appear quasi-stationary in space under appropriate conditions. In addition, Alfvénic fluctuations in the shocked magnetized pulsar wind can effectively scatter synchrotron beams from gyrating relativistic electrons and positrons.  相似文献   

20.
为了解释间歇脉冲星PSR B1931+24在射电噪比射电宁静状态下更大的自转减慢率和模拟蟹状星云脉冲星的自转演化,建立同时考虑了具有不同加速电势的核区和环区的环加速间隙下的星风制动模型.其中对于PSR B1931+24通过计算得到它的磁场强度和磁倾角,并且预言了其理论制动指数.对于蟹状星云脉冲星,通过计算得到它的磁场强度和磁倾角,还计算得到其制动指数随周期的演化和它在周期-周期导数图上的自转演化.相比于真空加速间隙、外加速间隙等,环加速间隙也同样能够适用于星风制动模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号