首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of ‘interactive’ ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d−1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d−1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.  相似文献   

2.
Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.  相似文献   

3.
Conant B 《Ground water》2004,42(2):243-257
Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.  相似文献   

4.
Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.  相似文献   

5.
Recharge areas of spring systems can be hard to identify, but they can be critically important for protection of a spring resource. A recharge area for a spring complex in southern Wisconsin was delineated using a variety of complementary techniques. A telescopic mesh refinement (TMR) model was constructed from an existing regional-scale ground water flow model. This TMR model was formally optimized using parameter estimation techniques; the optimized "best fit" to measured heads and fluxes was obtained by using a horizontal hydraulic conductivity 200% larger than the original regional model for the upper bedrock aquifer and 80% smaller for the lower bedrock aquifer. The uncertainty in hydraulic conductivity was formally considered using a stochastic Monte Carlo approach. Two-hundred model runs used uniformly distributed, randomly sampled, horizontal hydraulic conductivity values within the range given by the TMR optimized values and the previously constructed regional model. A probability distribution of particles captured by the spring, or a "probabilistic capture zone," was calculated from the realistic Monte Carlo results (136 runs of 200). In addition to portions of the local surface watershed, the capture zone encompassed areas outside of the watershed--demonstrating that the ground watershed and surface watershed do not coincide. Analysis of water collected from the site identified relatively large contrasts in chemistry, even for springs within 15 m of one another. The differences showed a distinct gradation from Ordovician-carbonate-dominated water in western spring vents to Cambrian-sandstone-influenced water in eastern spring vents. The difference in chemistry was attributed to distinctive bedrock geology as demonstrated by overlaying the capture zone derived from numerical modeling over a bedrock geology map for the area. This finding gives additional confidence to the capture zone calculated by modeling.  相似文献   

6.
Tyler SW  Muñoz JF  Wood WW 《Ground water》2006,44(3):329-338
Dry playa lakes and sabkhat often represent the terminus of large ground water flow systems and act as integrators of both upgradient (recharge) and downgradient discharge (evaporation). Ground water levels beneath playa/sabkha systems show a variety of surprising responses driven by large evaporation demands and chemical processes not typically encountered in more humid regions. When the water table is very close to the land surface, almost instantaneous rises can be observed with little observed change in either upgradient ground water recharge or potential evaporation. Conversely, when water tables are several meters below the playa surface, water table responses to interannual variability of recharge can be damped and lag significantly behind such changes. This review of the dynamics of shallow water tables in playa lakes and sabkhat discusses the pertinent hydraulic and solute processes and extracts a simple but comprehensive model based on soil physics for predicting the water table response to either upstream recharge changes or changes in potential evaporation at the playa/sabkha. Solutes and associated authigenic minerals are also shown to be important in discriminating both the causes and effects of water level fluctuations.  相似文献   

7.
Critical for the management of artificial recharge operations is detailed knowledge of ground water dynamics near spreading areas. Geochemical tracer techniques including stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments are ideally suited for these investigations. These tracers were used to evaluate flow near an artificial recharge site in northern Orange County, California, where approximately 2.5 x 10(8) m3 (200,000 acre-feet) of water are recharged annually. T/3He ages show that most of the relatively shallow ground water within 3 km of the recharge facilities have apparent ages < 2 years; further downgradient apparent ages increase, reaching > 20 years at approximately 6 km. Gas tracer experiments using sulfur hexafluoride and xenon isotopes were conducted from the Santa Ana River and two spreading basins. These tracers were followed in the ground water for more than two years, allowing subsurface flow patterns and flow times to be quantified. Results demonstrate that mean horizontal ground water velocities range from < 1 to > 4 km/year. The leading edges of the tracer patch moved at velocities about twice as fast as the center of mass. Leading edge velocities are important when considering the potential transport of microbes and other "time sensitive" contaminants and cannot be determined easily with other methods. T/3He apparent ages and tracer travel times agreed within the analytical uncertainty at 16 of 19 narrow screened monitoring wells. By combining these techniques, ground water flow was imaged with time scales on the order of weeks to decades.  相似文献   

8.
Ground water budget analysis in arid basins is substantially aided by integrated use of numerical models and environmental isotopes. Spatial variability of recharge, storage of water of both modern and pluvial age, and complex three-dimensional flow processes in these basins provide challenges to the development of a good conceptual model. Ground water age dating and mixing analysis with isotopic tracers complement standard hydrogeologic data that are collected and processed as an initial step in the development and calibration of a numerical model. Environmental isotopes can confirm or refute a priori assumptions of ground water flow, such as the general assumption that natural recharge occurs primarily along mountains and mountain fronts. Isotopes also serve as powerful tools during postaudits of numerical models. Ground water models provide a means of developing ground water budgets for entire model domains or for smaller regions within the model domain. These ground water budgets can be used to evaluate the impacts of pumping and estimate the magnitude of capture in the form of induced recharge from streams, as well as quantify storage changes within the system. The coupled analyses of ground water budget analysis and isotope sampling and analysis provide a means to confirm, refute, or modify conceptual models of ground water flow.  相似文献   

9.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   

10.
Ground water flow parameterization of an Appalachian coal mine complex   总被引:1,自引:0,他引:1  
Winters WR  Capo RC 《Ground water》2004,42(5):700-710
We examined a large (240 km2) northern Appalachian bituminous coal basin (Irwin Syncline, Westmoreland County, Pennsylvania) comprising 27 mine complexes with nine major (> 2.5 x 10(3) L/min) discharges. The synclinal basin was divided into seven subbasins based on equilibrium hydraulic relationships established during the past 25 years. Recharge rates, mine pool velocity, and residence times respond to hydraulic changes in the overburden induced by mine subsidence. The estimated maximum depth for subsidence fractures is 60 m (30 times mined thickness) with recharge rates decreasing significantly in subbasins with thicker overburden (> 75 m). Calculated subbasin recharge rates range from 2 to 6 x 10(-4) L/min/m2 and are significantly lower than the previously used rate for the basin. Residence time of ground water in the Irwin subbasins calculated using average linear velocity ranged from one to five years and were more consistent with field observations than estimates obtained using discharge and basin volume area. A positive correlation (r2 = 0.80) exists between net alkalinity of the mine water-impacted discharges and residence time in the mine pools. Our results for the Irwin coal basin suggest that use of a subbasin approach incorporating overburden depth, mining methodology, and the extent of postmining inundation will lead to improved determination of ground water flow parameters in mined watersheds in northern Appalachia and elsewhere.  相似文献   

11.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Lin YF  Anderson MP 《Ground water》2003,41(3):306-315
A digital procedure to estimate recharge/discharge rates that requires relatively short preparation time and uses readily available data was applied to a setting in central Wisconsin. The method requires only measurements of the water table, fluxes such as stream baseflows, bottom of the system, and hydraulic conductivity to delineate approximate recharge/discharge zones and to estimate rates. The method uses interpolation of the water table surface, recharge/discharge mapping, pattern recognition, and a parameter estimation model. The surface interpolator used is based on the theory of radial basis functions with thin-plate splines. The recharge/discharge mapping is based on a mass-balance calculation performed using MODFLOW. The results of the recharge/discharge mapping are critically dependent on the accuracy of the water table interpolation and the accuracy and number of water table measurements. The recharge pattern recognition is performed with the help of a graphical user interface (GUI) program based on several algorithms used in image processing. Pattern recognition is needed to identify the recharge/discharge zonations and zone the results of the mapping method. The parameter estimation program UCODE calculates the parameter values that provide a best fit between simulated heads and flows and calibration head-and-flow targets. A model of the Buena Vista Ground Water Basin in the Central Sand Plains of Wisconsin is used to demonstrate the procedure.  相似文献   

13.
Heat as a ground water tracer   总被引:40,自引:0,他引:40  
Anderson MP 《Ground water》2005,43(6):951-968
Heat carried by ground water serves as a tracer to identify surface water infiltration, flow through fractures, and flow patterns in ground water basins. Temperature measurements can be analyzed for recharge and discharge rates, the effects of surface warming, interchange with surface water, hydraulic conductivity of streambed sediments, and basin-scale permeability. Temperature data are also used in formal solutions of the inverse problem to estimate ground water flow and hydraulic conductivity. The fundamentals of using heat as a ground water tracer were published in the 1960s, but recent work has significantly expanded the application to a variety of hydrogeological settings. In recent work, temperature is used to delineate flows in the hyporheic zone, estimate submarine ground water discharge and depth to the salt-water interface, and in parameter estimation with coupled ground water and heat-flow models. While short reviews of selected work on heat as a ground water tracer can be found in a number of research papers, there is no critical synthesis of the larger body of work found in the hydrogeological literature. The purpose of this review paper is to fill that void and to show that ground water temperature data and associated analytical tools are currently underused and have not yet realized their full potential.  相似文献   

14.
The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: “recharge,” “transition,” and “discharge.” In the recharge zone the groundwater type is Ca-HCO3-SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3-SO4-Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3-SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.  相似文献   

15.
Michigan basin regional ground water flow discharge to three Great Lakes   总被引:1,自引:1,他引:0  
Ground water discharge to the Great Lakes around the Lower Peninsula of Michigan is primarily from recharge in riparian basins and proximal upland areas that are especially important to the northern half of the Lake Michigan shoreline. A steady-state finite-difference model was developed to simulate ground water flow in four regional aquifers in Michigan's Lower Peninsula: the Glaciofluvial, Saginaw, Parma-Bayport, and Marshall aquifers interlayered with the Till/"red beds," Saginaw, and Michigan confining units, respectively. The model domain was laterally bound by a continuous specified-head boundary, formed from lakes Michigan, Huron, St. Clair, and Erie, with the St. Clair and Detroit River connecting channels. The model was developed to quantify regional ground water flow in the aquifer systems using independently determined recharge estimates. According to the flow model, local stream stages and discharges account for 95% of the overall model water budget; only 50% enters the lakes directly from the ground water system. Direct ground water discharge to the Great Lakes' shorelines was calculated at 36 m3/sec, accounting for 5% of the overall model water budget. Lowland areas contribute far less ground water discharge to the Great Lakes than upland areas. The model indicates that Saginaw Bay receives only approximately 1.13 m3/sec ground water; the southern half of the Lake Michigan shoreline receives only approximately 2.83 m3/sec. In contrast, the northern half of the Lake Michigan shoreline receives more than 17 m3/sec from upland areas.  相似文献   

16.
The effect of regional and local ground water circulation systems on the Heat Flow Density (HFD) field is demonstrated by two examples from Switzerland, one near St. Gall in an area at the northern border of the Alps, and the other northwest of Zurich along the eastern end of the Jura mountains. Detailed HFD maps of both areas slow pronounced high heat flow zones which are attributed to discharge of subsurface water which has migrated laterally over several 10 km. Seepage velocities on the order of several mm/yr have been calculated. Geothermal information is not available about the infiltration zones where low HFD values are expected. Geochemical and isotopic analysis of water samples from springs and drillholes indicates the recharge zones and demonstrates the effect of extensive regional systems. These results indicate that in regions with significant topographic relief HFD mapping can be seriously biased if drillholes are positioned in valleys which correspond to discharge areas with relatively high HFD, whereas the low heat flow zones remain undetected.  相似文献   

17.
Soliz JG  Acebo HL 《Ground water》2001,39(3):339-347
The aim of this study is to apply a parsimonious hydrologic model to the Itxina karstic aquifer that can predict changes in discharge resulting from variable inputs (recharge). The Itxina Aquifer was divided into four cells corresponding to different recharge areas. Each cell was treated as a tank to characterize the conditions within the cell. In the model, when the reservoir boundaries coincide with the position of the siphons, the signal simulated is sensitive to input pulses of the recharge. This supports the hypothesis that the siphons are the controlling mechanism in the flow system of the aquifer. The good agreement between predicted and measured discharges demonstrates the ability of the model to simulate the flow in the Itxina Aquifer. These results demonstrated that the hydraulic conductivity increases downstream within the aquifer. The hydraulic conductivities obtained by calibration varied between 4.2 x 10(-3) m/s upstream of the aquifer, 6.0 x 10(-2) m/s in the central region, and 9.5 x 10(-1) m/s in the lower region of the aquifer. These values seem reasonable because the underground features in the principal caves show that the density of caves increases downstream in the Itxina Aquifer. The simple representation of the system produced results comparable to traditional ground water models with fewer data requirements and calibration parameters.  相似文献   

18.
To identify the groundwater flow system in the North China Plain, the chemical and stable isotopes of the groundwater and surface water were analysed along the Chaobai River and Yongding River basin. According to the field survey, the study area in the North China Plain was classified hydrogeologically into three parts: mountain, piedmont alluvial fan and lowland areas. The change of electrical conductance and pH values coincided with groundwater flow from mountain to lowland areas. The following groundwater types are recognized: Ca? HCO3 and Ca? Mg? HCO3 in mountain areas, Ca? Mg? HCO3 and Na? K? HCO3 in piedmont alluvial fan areas, and HCO3? Na in lowland areas. The stable isotope distribution of groundwater in the study area also has a good corresponding relation with other chemical characteristics. Stable isotope signatures reveal a major recharge from precipitation and surface water in the mountain areas. Chemical and stable isotope analysis data suggest that mountain and piedmont alluvial fan areas were the major recharge zones and the lowland areas belong to the main discharge zone. Precipitation and surface water were the major sources for groundwater in the North China Plain. Stable isotopic enrichment of groundwater near the dam area in front of the piedmont alluvial fan areas shows that the dam water infiltrated to the ground after evaporation. As a result, from the stable isotope analysis, isotope value of groundwater tends to deplete from sea level (horizontal ground surface) to both top of the mountain and the bottom of the lowland areas in symmetrically. This suggests that groundwater in the study area is controlled by the altitude effect. Shallow groundwater in the study area belongs to the local flow system and deep groundwater part of the regional flow system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Duke U. Ophori 《水文研究》2004,18(9):1579-1593
Two‐dimensional regional groundwater flow was simulated based on a conceptual model of low‐permeability crystalline rocks of the Whiteshell Research Area (WRA) in south‐eastern Manitoba. The conceptual model consists of fracture zones that strike in different directions and dip at various angles in the background rock mass. The thickness and hydraulic properties of the fracture zones in the conceptual model were varied as were the fluid properties and the boundary conditions of the groundwater flow system. The effects of these variations on the groundwater flow pattern and on the convective travel time along pathways from a hypothetical disposal vault at 500 m depth to discharge locations at the ground surface were evaluated. The vault was located in the regional discharge area of the groundwater system. A homogeneous conceptual model of the WRA, having only freshwater flow, formed a groundwater flow pattern with a regional flow system. Local flow systems developed increasingly with the introduction of fracture zones 20 m and 3 m thick, and depth‐dependent fluid density. This indicates a reduction in groundwater residence time by fracture zones and fluid density. Flow pathways were analysed using both a stream‐function and a particle‐tracking technique. The pathways and their lengths from the location of the vault to the surface varied spatially according to the flow patterns. The minimum travel time along these pathways was less than 150 000 and greater than 4 000 000 years in models with and without fracture zones, respectively, indicating that the presence of fracture zones was the major controlling factor. A precise knowledge and refinement of conceptual model parameters is necessary during site selection for waste disposal purposes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Update on the use of the RORA program for recharge estimation   总被引:5,自引:2,他引:3  
Rutledge AT 《Ground water》2007,45(3):374-382
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号