共查询到20条相似文献,搜索用时 23 毫秒
1.
A field study of surface water and groundwater interactions during baseflow and stormflow conditions was performed at the Reedy Creek watershed in the Virginia Coastal Plain. Three estimates of the average saturated hydraulic conductivity (Ks) of the unconfined aquifer were in reasonable agreement (ranging from 0.0033 to 0.010 cm/s), indicating that baseflow in the creek is entirely from the drainage of shallow groundwater from the relatively thin (1–6 m thick) unconfined aquifer. This relatively permeable surficial aquifer was found to be underlain by dark, olive grey, clay-silt and diatomaceous Miocene deposits of low permeability known as the Calvert Formation, which is believed to function as a confining bed in the area. A chemical hydrograph separation technique was used to resolve the contributions of [old] (pre-event) and [new] (event) water to stormflow. Results from a major rainstorm indicated that old water dominated the stormflow response of the watershed, although the new water contribution approached 40% at the hydrograph peak. Stormflow at Reedy Creek appears to result from saturation overland flow from variable source areas which include the stream channels and a significant part of the riparian wetland area. This response appears to be attributable to the transient dynamics of the shallow groundwater flow system and to the formation of localized groundwater mounds which raise the water-table to the wetland surface. 相似文献
2.
3.
The results of field measurements conducted in a small (19·37 ha) agricultural watershed on the North Carolina coastal plain during the summer of 1996 are presented. The objective of the study was to develop a more complete understanding of basin response in the region with respect to stormflow generation and, in particular, to identify the processes that determine storm runoff and the conditions under which such processes occur. Twenty‐four storm events were monitored, including two tropical storm systems and two hurricanes. The data demonstrate considerable spatial and temporal heterogeneity in runoff generation within the watershed. Surface flowpaths, in the form of Hortonian overland flow and saturation overland flow, were found to be the dominant runoff processes during the storm events measured. The hillslope flowpaths had the same response time as the basin streamflow, but significantly shorter time of rise and lag times. The importance of Hortonian flow in a basin with sandy, permeable soils, as well as the rapid stormflow response in a low‐relief area with a humid climate, was contrary to expectations. This, coupled with the contingency of runoff response, suggests that it may be difficult to generalize about runoff generation mechanisms in broad terms, and that a synoptic approach may be more appropriate. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
Microearthquake activity associated with underground coal-mining in Buchanan County,Virginia, U.S.A.
G. A. Bollinger 《Pure and Applied Geophysics》1989,129(3-4):407-413
Microearthquake activity (impulsive, transient seismic events, with durations up to several seconds at a distance of 500 m, that exhibit a coda with a shift toward lower frequencies with increasing time) was monitored for a three-month period by a single seismograph sited directly above an undergound longwall mine in the coal-mining region of Buchanan County, Virginia, U.S.A. The purpose of this investigation was to determine if precursory increases in microseismicity prior to cavings (subsidence) of overburden in the mine were present and, if so, could they be detected by surface seismographic observations. The first two recording weeks were prior to the beginning of coal removal operations at the monitored mine. A comparision of the before and after levels of microearthquake occurrence indicated a sevenfold increase to about seven seismic events/hour that was attendant with the development of the time over the level of the background, non-coal-mining period seismicity.A total of over 15,000 microearthquakes were recorded during the monitoring period, most of which occurred during the actual coal-mining operations. The workday rate exceeded 30 seismic events/hour in contrast with the non-workday rate of about seven such events/hour. Rock and coal fracturing ahead of the mine plow are believed to be the primary cause of the majority of these very small seismic events. Cavings and rockbursts (violent eruptions that propel rock debris into the mine) also contributed to the total seismic activity. It appears that cavings, some of which were large enough to be felt on ground surface, are the primary source of the non-plowing related seismicity as larger free surface areas are opened underground. Any seismic activity premonitory to cavings, however, was effectively masked by the high workday rate. Thus, the use of surface seismic monitoring, in an attempt to document any increases of localized seismicity precursory to cavings, failed in this instance.The exact location of the mine and the survey dates are not given in this paper at the request of the mine operator. 相似文献
5.
6.
Quantifying the spatial variability of species-specific tree transpiration across hillslopes is important for estimating watershed-scale evapotranspiration (ET) and predicting spatial drought effects on vegetation. The objectives of this study are to (1) assess sap flux density (Js) and tree-level transpiration (Ts) across three contrasting zones a (riparian buffer, mid-hillslope and upland-hillslope, (2) determine how species-specific Js responds to vapour pressure deficit (VPD) and (3) estimate watershed-level transpiration (Tw) using Ts derived from each zone. During 2015 and 2016, we measured Js in eight tree species in the three topographic zones in a small 12-ha forested watershed in the Piedmont region of central North Carolina. In the dry year of 2015, loblolly pine (Pinus taeda), Virginia pine (Pinus virginiana) and sweetgum (Liquidambar styraciflua) Js rates were significantly higher in the riparian buffer when compared to the other two zones. In contrast, Js rates in tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were significantly lower in the buffer than in the mid-hillslope. Daily Ts varied by zone and ranged from 10 to 93 L/day in the dry year and from 9 to 122 L/day in the wet year (2016). Js responded nonlinearly to VPD in all species and zones. Annual Tw was 447, 377 and 340 mm based on scaled-Js data for the buffer, mid-hillslope and upland-hillslope, respectively. We conclude that large spatial variability in Js and scaled Tw was driven by differences in soil moisture at each zone and forest composition. Consequently, spatial heterogeneity of vegetation and soil moisture must be considered when accurately quantifying watershed level ET. 相似文献
7.
8.
Daniel B. Stephens 《Journal of Hydrology》1983,61(4):391-408
In the southern San Juan Basin, New Mexico, strata of Permian and younger age dip gently toward the center of the basin. Most previous investigators believed that recharge to these strata occurred by precipitation on the outcrops and groundwater flowed downdip to the north and northeast. Recent water-level measurements in an undeveloped part of the basin near Prewitt, New Mexico, show that groundwater at shallow depths in alluvium and bedrock flows southward, opposite to the dip direction, and toward a major ephemeral drainage in a strike valley. North of this area, groundwater in deep bedrock aquifers does appear to flow northward. This information suggests that there are two groundwater circulation patterns; a shallow one controlled by topography and a deeper one controlled by geologic structure.Significant amounts of recharge to sandstone aquifers by infiltration through outcrops is unlikely due to the near-vertical exposures on cliffs, the gentle dip of the strata, and small annual precipitation. Numerical model results suggest that recharge to bedrock aquifers may be from downward leakage via aquitards over large areas and leakage from narrow alluvial aquifers in the subcrop area. The recharge mechanism is controlled by the hydraulic conductivity of the strata.As the flow path is controlled by hydraulic conductivity contrasts, geologic structure, and topography, contamination movement from surface impoundments is likely to be difficult to predict without a thorough hydrogeological site investigation. 相似文献
9.
Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2).Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ~65 and ~55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased.It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon. 相似文献
10.
South Fork Quantico Creek (SFQ; 19.8 square kilometre (km2), forested) and Fourmile Run (4MR; 32.4-km2, urban) are small watersheds in northern Virginia, United States. Precipitation and streamflow data for both watersheds were examined from water year (WY) 1952 through 2022. Temporal changes in hydrologic metrics were identified by calculating trends in annual precipitation, annual peak flow, mean daily flow, minimum daily flow, stream flashiness, and the runoff ratio. The impact of climate and urbanization on watershed hydrology was assessed by computing trends on both raw and precipitation-adjusted data. Despite increasing precipitation in both watersheds, increasing monotonic trends in most hydrologic metrics were observed only in 4MR. At 4MR, the long-term trend in annual peak flow was non-linear, thus trends were calculated on separate periods. Annual peak flow increased from WY 1952 through 1968, coinciding with a period of rapid urbanization. During WY 1969 through 1981, annual peak flows decreased, coinciding with construction of a flood channelization project. Trends for both periods were robust to precipitation adjustment. From WY 1982 through 2022, no change in the precipitation-adjusted annual peak flows occurred, suggesting annual peak flows increased due to climate factors during this period. Comparison of area-normalized hydrologic metrics between the two watersheds revealed higher flows in 4MR than SFQ across all flows, not just high flows. Runoff ratio and stream flashiness also were higher in 4MR. Differences in hydrologic metrics between the two watersheds were driven primarily by differences in land use, land cover, and modifications to the water balance related to urbanization. Climate change has altered watershed hydrology at both sites, but extensive urbanization in 4MR has altered the hydrology more than that of SFQ. We conclude that urban watersheds are likely at greater risk of increased flooding than less developed areas as the climate intensifies. 相似文献
11.
A latite dome in northwest Arizona contains a rare occurrence of primary SO4-rich scapolite phenocrysts. The total phenocryst assemblage consists of plagioclase (An20?An33), hornblende, biotite, and scapolite (Me68). Microphenocrysts include allanite and oxidized low-Ti magnetite. Electron microprobe analyses show that the scapolite contains about 1.74 wt.% S, which indicates an atomic S/(S + C) of 0.58. Although scapolite occurs in xenoliths in volcanic rocks and diatremes, as well as a metamorphic mineral in granulites, its occurrence as a primary igneous mineral is extremely rare.Ca-rich scapolite has been crystallized experimentally by others from melts with a wide range of SiO2, CaO, and Na2O contents, at temperatures above 825°C and pressures ranging from 3 to 15 kbar. Comparison of scapolite from this latite with synthetic scapolite crystallized from nepheline syenite melt suggests that the Arizona phenocrysts crystallized under conditions of 850 to 900°C, 3–6 kbar total pressure, and unusually high ?CO2 and ?SO2. The rarity of scapolite as a phenocryst mineral suggests that high partial pressures of CO2 and SO2 are rare in the magmatic environment. 相似文献
12.
Imbrication, indicating flow and source direction, occurs in three Pleistocene or upper Pliocene pumice-flow tuffs exposed in a 700-km2 area on the east flank of the Cascade Range near Bend, Oregon, and shows the location of previously unknown source vents of these tuffs. The imbrication is formed by inclined elongate and/or flat pumice or lithic fragments and locally by elongate plagioclase crystals. Imbrication is best developed within the lower zones of individual flow units; the pumiceous top zones also locally show imbrication directions parallel to that in the lower zones. Moreover, the areal pattern of size distribution of lithic and pumice fragments in the flows is concordant with the flow direction pattern indicated by imbrication.The upper pumice flow shows a fan-shaped pattern of flow directions indicated by imbrication which points to a western source. A possible vent, about 20 km west of Bend in the highland near Broken Top Volcano, is marked by many silicic domes and basaltic cinder cones where there is a 6–8 mgal negative Bouguer gravity anomaly. In contrast, imbrication in the middle and lower pumice flows indicates flow from a source southwest of Bend. Vents in this direction are not obvious. Possible buried vents are located about 30 km and 45 km southwest of Bend near Sitkum Butte and Lookout Mountain, respectively. 相似文献
13.
A heat flow isoline map is presented. Low and relatively constant heat flow has been observed in the old shield areas of the East European Platform (25–40 mW/m2). Increased heat flow (>50 mW/m2) has been found in the Dniepr-Donetz depression. The area south of the East European Platform is characterized by highly variable heat flow (55–100 mW/m2). Some geophysical implications are discussed. 相似文献
14.
A series of trenches about a metre deep, 20 to 30 m wide, and as much as 2 km in length occurs in central Wisconsin, along the east shore of proglacial Lake Wisconsin. They are interpreted to be collapse trenches formed when shore ice melted after being buried beneath an expanding outwash plain. 相似文献
15.
North Menan Butte is a tuff cone near Idaho Falls, Idaho. It is a result of the eruption of basaltic magma through shallow water-saturated river alluvium of the Snake River. The cone is characterized by primary fractures that can be classified into four groups on the basis of their physical properties and their orientations relative to the symmetry elements of the cone. Type I fractures are short, closely spaced and usually confined to individual beds. They strike approximately at right angles to cone radii and always dip toward the rim of the tuff cone. Bed segments separated by these fractures have undergone rotation, resulting in normal displacements. Type II fractures have similar attitudes but are more continuous, less frequent, and show no shear displacement. Type III fractures also strike at right angles to cone radii, but they dip away from the cone rim. They cut across several beds and reveal inconsistent senses of shear displacement. Type IV fractures are radial, steeply dipping and tend to be the most continuous of all fracture types. Type I fractures were the earliest to develop; age relationships otherwise are uncertain. Examples of all four types of fractures are exposed on the inner and outer eroded slopes of the cone.Evidence from the cone indicates that the fractures developed in an unconsolidated aggregate of tuff with low cohesion; therefore, analysis of fracture genesis should be constrained by principles of soil mechanics. Type I fractures originated as tension fractures related to early downslope mass movement. Later movement on Type I fractures accompanied the development of Type III shear fractures and possible bedding plane displacements, all caused by overloading the crest of the cone by late-stage eruptive products. The origin of Type II fractures is unknown; shrinkage due to desiccation or large-scale creep are possible explanations. The radial Type IV fractures may be a consequence of desiccation shrinkage or possibly of subcone processes such as magma doming or radial hydraulic fracturing. 相似文献
16.
David D. Bosch Alisa W. Coffin Joseph Sheridan Oliva Pisani Dinku M. Endale Tim C. Strickland 《水文研究》2021,35(8):e14334
The US Department of Agriculture-Agricultural Research Service Southeast Watershed Research Laboratory (SEWRL) initiated a hydrologic research program on the Little River Experimental Watershed (LREW) in 1967. Long-term (52 years) streamflow data are available for nine sites, including rainfall-runoff relationships and hydrograph characteristics regularly used in research on interactive effects of climate, vegetation, soils, and land-use in low-gradient streams of the US EPA Level III Southeastern Plains ecoregion. A summary of prior research on the LREW illustrates the impact of the watershed on building a regional understanding of hydrology and water quality. Climatic and streamflow data were used to make comparisons of scale across the nine nested LREW watersheds (LRB, LRF, LRI, LRJ, LRK, LRO, LRN, LRM, and LRO3) and two regional watersheds (Alapaha and Little River at Adel). Annual rainfall for the largest LREW, LRB, was 1200 mm while average annual streamflow was 320 mm. Annual rainfall, streamflow, and the ratio between annual streamflow and rainfall (Sratio) were similar (α = 0.05) across LREWs LRB, LRF, LRI, LRJ, LRK, and LRO. While annual rainfall within the 275 ha LRO3 was found to be similar to LRO and LRM (α = 0.05), annual streamflow and Sratio were significantly different (α = 0.05). Comparisons of annual rainfall, streamflow, and Sratio between LRB and the regional watersheds indicated no differences (α = 0.05). Based upon this analysis, most regional watersheds shared similar hydrologic characteristics. LRO3 was an exception, where increases in row crops and decreases in forest coverage resulted in increased streamflow. LREW data have been instrumental in building considerable scientific understanding of flow and transport processes for these stream systems. Continued operation of the LREW hydrologic network will support hydrologic research as well as environmental quality and riparian research programs that address emerging and high priority natural resource and environmental issues. 相似文献
17.
18.
19.
A brief history of contributions to ground water hydrology by the U.S. Geological Survey 总被引:2,自引:0,他引:2
Reilly TE 《Ground water》2004,42(4):625-631