首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Analytical Model for Mean Wind Profiles in Sparse Canopies   总被引:2,自引:2,他引:0  
Existing analytical models for mean wind profiles within canopies are applicable only in dense canopy scenarios, where all momentum is absorbed by canopy elements and, hence, the effect of the ground on turbulent mixing is not important. Here, we propose a new analytical model that can simulate mean wind profiles within sparse canopies under neutral conditions. The model adopts a linearized canopy-drag parametrization and a first-order turbulence closure scheme taking into account the effects of both the ground and canopy elements on turbulent mixing. The resulting wind profile within a sparser canopy appears to be more like a logarithmic form, with the no-slip condition at the ground being satisfied. The analytical solution converges exactly to the standard surface-layer logarithmic wind profile in the case of zero canopy density (i.e., no-canopy scenario) and tends to be an exponential wind profile for a dense canopy; this feature is unique compared with existing analytical models for canopy wind profiles. Results from the new model are in good agreement with those from laboratory experiments and numerical simulations.  相似文献   

2.
不同强风样本湍流特性参数的计算分析   总被引:1,自引:1,他引:0       下载免费PDF全文
在结构风工程中, 风湍流统计参数计算的正确与否直接影响到风荷载的计算精度。在实际风参数计算与分析中, 多选用风速较大的样本资料, 但过分强调大风可能产生不合理的计算结果。利用超声风速仪瞬时风速观测资料, 分别划分成相对强风和持续强风样本, 计算并比较其湍流统计特性参数, 发现湍流统计参数特性值 (湍流度、阵风因子、摩擦速度等) 与风速大小并不能很好匹配, 有时风速不大但其湍流特性值却很大, 反之也然。研究表明:选取的湍流风资料样本或统计方法不同, 都会影响风特性参数的计算结果, 进而影响到风荷载计算的精度。这一结果对于提高结构风工程中风参数计算与设计的科学性和合理性具有现实意义。  相似文献   

3.
4.
Under neutral conditions and with low winds, profiles of mean and turbulent wind components have been measured at various points across an embankment with aspect ratio 0.3. These measurements have been compared with and related to those of undisturbed flow in a horizontal homogeneous area on the windward side. The speed-up ratio, the turbulent and mean kinetic energy and the turbulent shear stress are examined. It is found that the flow stagnates on the windward side, accelerates above the crest, and separates behind the crest. The results show a remarkable dependence on the angle of attack. With an angle smaller than 90 °, the influence of the embankment on the mean wind field is reduced but is increased on the turbulent part, as lateral gustiness components are amplified. With the incoming flow normal to the embankment, maximum turbulence is found on the top of the ridge near the surface but at greater heights farther downwind. The same is true for the shear stress, but only for oblique flow, whereas for normal flow a minimum is found above the crest and a maximum on the windward side. Therefore, with varying angle of attack the embankment acts in different ways on mean wind, turbulent kinetic energy, and turbulent stress. Although the winds were low, all effects are clearly evident in the data.  相似文献   

5.
We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654–671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl’s jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.  相似文献   

6.
北京北郊冬季大风过程湍流通量演变特征的分析研究   总被引:4,自引:0,他引:4  
张宏升  刘新建  朱好 《大气科学》2010,34(3):661-668
利用中国科学院大气物理研究所325 m气象观测塔1993年12月~1994年1月大气边界层实验资料, 计算分析了大风过境过程中47 m和120 m高度湍流通量演变特征及其影响因子, 以及与风速、 稳定度等参数的关系。结果表明: 大风过程对近地面层的物质能量输送有着重要影响, 大风之前出现短时间动量上传和热量下传; 大风过程中的湍流通量数值明显高于过境后, 水平方向湍流通量数值和能量增加幅度大于垂直方向; 当风速大于临界值5 m/s时, 湍流通量与风速、 湍流动能的相关迅速增大; 湍流谱特征表现为湍流能量的低频部分增加、 湍流谱曲线变宽; 大风能强烈影响近地面层的能量收支。  相似文献   

7.
In southern China,cold air is a common weather process during the winter season;it can cause strong wind,sharp temperature decreases,and even the snow or freezing rain events.However,the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data,especially regarding turbulence.In this study,four-layer gradient meteorological observation data and one-layer,10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China.The results show that,with the passage of a cold air front,the wind speed exhibits low-frequency variations and that the wind systematically descends.During the strong wind period,the wind speed increases with height in the surface layer.Regular gust packets are superimposed on the basic strong wind flow.Before the passage of cold air,the wind gusts exhibit a coherent structure.The wind and turbulent momentum fluxes are small,although the gusty wind momentum flux is slightly larger than the turbulent momentum flux.However,during the invasion of cold air,both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed,and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period.After the cold air invasion,this structure almost disappears.  相似文献   

8.
Downward fluxes of turbulent kinetic energy have been frequently observed in the air layer just above plant canopies. In order to investigate the mechanism for such downward transport, analysis of observational data is attempted. Height-dependency of turbulent kinetic energy flux and turbulence statistics including higher order moments is represented as a function of a non-dimensional height z/H, where z is an observational height and H an average height of plant canopies. Downward fluxes and non-Gaussianity of wind velocity fluctuations are predominant just above plant canopies and decrease with increasing height. The downward flux is closely related to the high intensity of turbulence and the non-Gaussianity of wind velocity fluctuations, especially with a positive skewness in the longitudinal wind and a negative skewness in the vertical wind. The analysis method of conditional sampling and averaging is applied to the present observations. The results show that the predominance of the intermittent inrush phase over the intermittent ejection phase leads to the above-mentioned non-Gaussianity. Finally, a simple explanation is given in order to interpret the turbulent flow structure in the air layer near the plant canopies, which is associated with the downward energy transport process.  相似文献   

9.
大气边界层中湍流扩散问题的随机微分方程处理   总被引:2,自引:0,他引:2  
本文在对湍流扩散机理进行分析的基础上,提出用IT(?)·K随机微分方程来描述湍流扩散过程,并导出了大气边界层中连续点源扩散浓度分布的一般形式。其一级近似可以用初等函数来表示,它的特例与污染气象学中常用的模式是一致的。 另外,本文所给出的一般形式还可以包容地转风和重力沉降等作用对扩散的影响,并具体给出了它的一级近似表达式。  相似文献   

10.
利用北京中国科学院大气物理研究所325 m气象观测塔的气象梯度资料和湍流资料,分析了2014年11月29日至12月5日北京两次大风过程中气象要素和湍流输送特征的变化。第一次大风过程的强度和持续时间均高于第二次大风过程。强烈的风速垂直切变主要集中在距地面100 m高度范围内,最强风速垂直切变达到0.31 s~(-1)。大风过程中,阵风系数呈现随高度减小的趋势,越接近地面,阵风系数愈大。阵风强度的变化与阵风系数相似,100 m以下高度时,阵风强度随高度增大而减小。大风过程自上而下改变边界层结构,平均动能、湍流动能和摩擦速度最先从上层(280 m)发生变化且迅速增加。近地层由于风速垂直梯度的显著差异,近地层垂直方向的湍流强度最大。大风时各功率谱在低频区(0.01 s~(-1))达到峰值,大风过后各高度的能量都有所下降。  相似文献   

11.
一次暴雪过程前后近地层物理量场特征分析   总被引:2,自引:1,他引:1  
利用铁塔风梯度观测资料和超声风温仪观测资料,对2008年1月18—21日暴雪前后,湖北黄石长江岸边近地层风场和湍流作了计算分析,探索其异常变化特征,为认识黄石地区暴雪近地层发生发展的物理过程提供依据。结果表明,暴雪前,风向转变,水平风速和垂直风速明显增大,湍流通量的输送较活跃,湍流动能和湍流强度有显著峰值出现;降雪过程结束后,湍流动能再次增大后缓慢减弱。可见此次暴雪过程前后近地层物理量场有异常变化  相似文献   

12.
A quasi-one-dimensional numerical model containing a prognostic turbulent kinetic energy parameterization and simplified approximations to horizontal gradients is used to study interactions of thermally induced nocturnal slope flows with following and opposing ambient winds. It is found that a following ambient wind causes the peak perturbation wind to be weaker and to be realized at a greater height, while an opposing ambient wind leads to a stronger perturbation wind at a lower height. The reason for this response lies in the interactions of the shears of the thermal and ambient components through the mechanical production of turbulent kinetic energy.  相似文献   

13.
The forcing mechanisms for Antarctic coastal polynyas and the thermodynamic effects of existing polynyas are studied by means of an air-sea-ice interaction experiment in the Weddell Sea in October and November 1986.Coastal polynyas develop in close relationship to the ice motion and form most rapidly with offshore ice motion. Narrow polynyas occur frequently on the lee side of headlands and with strong curvature of the coastline. From the momentum balance of drifting sea ice, a forcing diagram is constructed, which relates ice motion to the surface-layer wind vector v z and to the geostrophic ocean current vector c g . In agreement with the data, wind forcing dominates when the wind speed at a height of 3 m exceeds the geostrophic current velocity by a factor of at least 33. This condition within the ocean regime of the Antarctic coastal current usually is fulfilled for wind speeds above 5 m/s at a height of 3 m.Based on a nonlinear parameter estimation technique, optimum parameters for free ice drift are calculated. Including a drift dependent geostrophic current in the ice/water drag yields a maximum of explained variance (91%) of ice velocity.The turbulent heat exchange between sea ice and polynya surfaces is derived from surface-layer wind and temperature data, from temperature changes of the air mass along its trajectory and from an application of the resistance laws for the atmospheric PBL. The turbulent heat flux averaged over all randomly distributed observations in coastal polynyas is 143 W/m2. This value is significantly different over pack ice and shelf ice surfaces, where downward fluxes prevail. The large variances of turbulent fluxes can be explained by variable wind speeds and air temperatures. The heat fluxes are also affected by cloud feedback processes and vary in time due to the formation of new ice at the polynya surface.Maximum turbulent fluxes of more than 400 W/m2 result from strong winds and low air temperatures. The heat exchange is similarly intense in a narrow zone close to the ice front, when under weak wind conditions, a local circulation develops and cold air associated with strong surface inversions over the shelf ice is heated above the open water.  相似文献   

14.
The reduction of horizontal wind speed at hub height in an infinite cluster of wind turbines is computed from a balance between a loss of horizontal momentum due to the drag and replenishment from above by turbulent fluxes. This reduction is derived without assumptions concerning the vertical wind profile above or below hub height, only some basic assumptions on turbulent exchange have been made. Two applications of the result are presented, one considering wind turbines and one pressure drag on orographic obstacles in the atmospheric boundary layer. Both applications are basically governed by the same kind of momentum balance.  相似文献   

15.
An atmospheric surface-layer (ASL) experiment conducted at a meteorological site in the Oostelijk-Flevoland polder of the Netherlands is described. Turbulent fluctuations of wind velocity, air temperature and static pressure were measured, using three 10 m towers.Simultaneous turbulent signals at several heights on the towers were used to investigate the properties of the turbulent structures which contribute most significantly to the turbulent vertical transports in the unstable ASL. These turbulent structures produce between 30 and 50% of the mean turbulent vertical transport of horizontal alongwind momentum and they contribute to between 40 and 50% of the mean turbulent vertical heat transport; in both cases this occurs during 15 to 20% of the total observation time.The translation speed of the turbulent structures equals the wind speed averaged over the depth of the ASL, which scales on the surface friction velocity. The inclination angle of the temperature interface at the upstream edge of the turbulent structures to the surface is significantly smaller than that of the internal shear layer, which is associated with the temperature interface. The turbulent structures in the unstable ASL are determined by a large-scale temperature field: Convective motions, which encompass the whole depth of the planetary boundary layer (PBL), penetrate into the ASL. The curvature of the vertical profile of mean horizontal alongwind velocity forces the alignment of the convective cells in the flow direction (Kuettner, 1971), which have an average length of several hundreds of metres and an average width of a few tens of metres. This mechanism leads to the formation of turbulent structures, which extend throughout the depth of the ASL.  相似文献   

16.
The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed usingK theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.  相似文献   

17.
A Note on the Drag of the Sea Surface at Hurricane Winds   总被引:7,自引:0,他引:7  
Based on the solution of the turbulent kinetic energy balance equation for the airflow in the regime of limited saturation by suspended sea-spray droplets, some experimental evidence, and simple arguments, a resistance law of the sea surface at hurricane winds is derived. It predicts the reduction of the drag coefficient for the wind speed exceeding hurricane values of 30–40 m s -1 in agreement with field data.  相似文献   

18.
The characteristics of the atmospheric turbulent Ekman boundary layer have been qualitatively simulated in an annular rotating wind tunnel. Observed velocity spirals found to exist within the wind tunnel resembled qualitatively those found in the atmosphere in that a two-layer structure was evident, consisting of a log-linear portion topped by an outer spiral layer. The magnitude of the friction velocity u * obtained from the log-linear profile agreed with that measured directly, i.e., that obtained from the relation: u * = (u′w′)1/2. Also, the effects of surface roughness on the characteristics of the boundary layer agreed with expected results. In cases where the parametric behaviour predicted by theory departed from the observed behaviour, the probable cause was the inherent size limitations of the wind tunnel. The ability to maintain dynamic similarity is constrained by the limited radius of curvature of the wind tunnel. The vertical distribution of turbulent intensity in the wind tunnel was found to agree qualitatively with an observed atmospheric distribution. Also, a vertical distribution of eddy diffusivity was calculated from tunnel data and found to give qualitatively what one might expect in the atmosphere.  相似文献   

19.
We have analyzed eddy covariance data collected within open canopy to investigate the influence of non-flat terrain and wind direction shear on the canopy turbulence. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree at this site. A variety of turbulent statistics were examined as a function of wind direction in near-neutral conditions. Heterogeneous surface characteristics results in significant differences in measured turbulent statistics. Upwind trees on the flat and up-sloping terrains yield typical features of canopy turbulence while upwind elevated surface with trees yields significant wind direction shear, reduced u and w skewness, and negligible correlation between u and w. The directional dependence of turbulence statistics is due that strong wind blows more horizontally rather than following terrain, and hence combination of slope related momentum flux and canopy eddy motion decreases the magnitude of Sk w and r uw for the downslope flow while it enhances them for the upslope flow. Significant v skewness to the west indicates intermittent downdraft of northerly wind, possibly due to lateral shear of wind in the presence of significant wind direction shear. The effects of wind direction shear on turbulent statistics were also examined. The results showed that correlation coefficient between lateral velocities and vertical velocity show significant dependence on wind direction shear through change of lateral wind shear. Quadrant analysis shows increased outward interaction and reduced role of sweep motion for longitudinal momentum flux for the downslope flow. Multi-resolution analysis indicates that uw correlation shows peak at larger averaging time for the upslope flow than for the downslope flow, indicating that large eddy plays an active role in momentum transfer for the upslope flow. On the other hand, downslope flow shows larger velocity variances than other flows despite similar wind speed. These results suggest that non-flatness of terrain significantly influences on canopy-atmosphere exchange.  相似文献   

20.
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号