首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Recent results from space missions like YOHKOH, SOHO or TRACE as well as ground‐based observations clearly indicate that physical processes of most solar phenomena take place on small scales, which are still below the resolution of the instruments employed. There is an urgent need for observations at higher resolution and also for their extension to multi‐wavelength regimes. Space‐borne as well as ground‐based instruments have limitations of the present‐day technology, although in a different way. In this communication, an overview of space instruments currently in operation or in the preparation phase is presented and references to more detailed information are given.  相似文献   

2.
We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA’s Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at Hα, on-band and at ± 0.035 nm and ± 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 Hα spicules, and 14 EUV spicules that overlapped Hα spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the Hα spicules.  相似文献   

3.
We present the first calculation of the kinetic Sunyaev–Zel’dovich (kSZ) effect due to the inhomogeneus reionization of the universe based on detailed large-scale radiative transfer simulations of reionization. The resulting sky power spectra peak at ℓ = 2000–8000 with maximum values of [ℓ(ℓ + 1)C/(2π)]max  4–7 × 10 −13. The scale roughly corresponds to the typical ionized bubble sizes observed in our simulations, of 5–20 Mpc. The kSZ anisotropy signal from reionization dominates the primary CMB signal above ℓ = 3000. At large-scales the patchy kSZ signal depends only on the source efficiencies. It is higher when sources are more efficient at producing ionizing photons, since such sources produce larger ionized regions, on average, than less efficient sources. The introduction of sub-grid gas clumping in the radiative transfer simulations produce significantly more power at small-scales, but has little effect at large-scales. The patchy reionization kSZ signal is dominated by the post-reionization signal from fully-ionized gas, but the two contributions are of similar order at scales ℓ  3000 − 104, indicating that the kSZ anisotropies from reionization are an important component of the total kSZ signal at these scales.  相似文献   

4.
5.
6.
7.
Abstract— The mineralogy and composition of six Mongolian meteorites were studied in some detail. Previously, only limited information existed about these rocks, and some were still unclassified. The six meteorites include three ordinary chondrites and three irons. The ordinary chondrite Adzhi-Bogdo (stone) is a regolith breccia (LL3–6) containing various types of clasts (some of foreign origin) embedded within a fine-grained clastic matrix. Tugalin Bulen (H6) and Noyan Bogdo (L6) meteorites are typical, well-metamorphosed ordinary chondrites. Adzhi-Bogdo (iron) has to be regarded as an IA iron meteorite like Campo del Cielo or Canyon Diablo; although the sample studied had been heated to about 900 °C–950 °C some time in the past, thus eradicating all original structural elements. Manlai is structurally closely related to the IIC iron meteorites; but based on its chemistry, which does not fit into this group, it is suggested that Manlai is an anomalous iron meteorite. The third iron, Sargiin Gobi, is certainly a normal member of the IA iron meteorites. The concentrations and isotopic compositions of He, Ne, and Ar were measured for all meteorites and their gas retention ages and exposure ages are discussed.  相似文献   

8.
Abstract— Several moldavites have been discovered in the northern part of Lower Austria. Tektites from two new locations (Altenburg and Radessen) have been analyzed. These new finds lend credibility to old reports about tektites from Lower Austria, some of which are associated with artefacts of prehistoric cultures. The new locations are situated between the Bohemian and Moravian parts of the moldavite strewn field, which is thus shown to extend further south than previously known. Most of the samples show clear indications of surface alterations by water and/or humic substances, and one sample shows signs of fluviatile transport. The geological setting of the moldavite-bearing sediments is similar to the Czechoslovakian occurrences but is probably less disturbed. Chemically the samples show considerable variations even within one location. No unambiguous association with either the Bohemian or the Moravian group is evident either for the major or trace element abundances.  相似文献   

9.
X-rays from massive OB stars: thermal emission from radiative shocks   总被引:1,自引:0,他引:1  
Chandra grating spectra of a sample of 15 massive OB stars were analysed under the basic assumption that the X-ray emission is produced in an ensemble of shocks formed in the winds driven by these objects. Shocks develop either as a result of radiation-driven instabilities or due to confinement of the wind by a relatively strong magnetic field, and since they are radiative, a simple model of their X-ray emission was developed that allows a direct comparison with observations. According to our model, the shock structures (clumps, complete or fractional shells) eventually become 'cold' clouds in the X-ray sky of the star. As a result, it is expected that for large covering factors of the hot clumps, there is a high probability for X-ray absorption by the 'cold' clouds, resulting in blueshifted spectral lines. Our analysis has revealed that such a correlation indeed exists for the considered sample of OB stars. As to the temperature characteristics of the X-ray emission plasma, the studied OB stars fall in two groups: (i) one with plasma temperature limited to ∼0.1–0.4 keV and (ii) the other with X-rays produced in plasmas at considerably higher temperatures. We argue that the two groups correspond to different mechanisms for the origin of X-rays: in radiation-driven instability shocks and in magnetically confined wind shocks, respectively.  相似文献   

10.
Equations of motion are established for a dynamical system in which a spacecraft flies close to and interacts with an outer planet and one or more of its satellites. For the computation of the state and mass partials needed in a simultaneous orbit correction ofn interacting bodies, a notably compact set of variational equations is derived. The above system of differential equations is integrated numerically on a computer.Spacecraft-satellite direction measurements accurate to ±10 were simulated along three representative trajectories (Mariner/Jupiter/Saturn 1977 missions) approaching Io, Titan, and Iapetus to within 41 000, 13 000, and 7 000 km, respectively. For example, from measurements distributed evenly at half-day intervals over a 60-day arc centered on encounter, but none so close that the satellite would fill more than 0.5° in the sky, the orbit of the satelliteand that of the spacraft can be estimated to about 100 km. In addition, the mass of the satellite is obtainable to 2.6% for Io, 1.4% for Titan, and 9% for Iapetus. If only measurements up to 3 days before satellite encounter are included, the orbit of the satelliteor that of the spacecraft can be estimated to about 300 km, all information on mass being lost.The paper concludes with a brief discussion of the need for future work on the orbits of the satellites of the outer planets.  相似文献   

11.
The topic is reviewed with emphasis on observations in the optical and near infrared spectral range.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   

12.
A comparison is made of the statistical auroral ovals determined by all-sky camera photographs with DMSP photographs for different degrees of geomagnetic activity. It is shown that the agreement between them is excellent.  相似文献   

13.
Open star clusters from the MWSC (Milky Way Star Clusters) catalogue have been used to determine the Galactic rotation parameters. The circular rotation velocity of the solar neighborhood around the Galactic center has been found from data on more than 2000 clusters of various ages to be V 0 = 236 ± 6 km s?1 for the adopted Galactocentric distance of the Sun R 0 = 8.3 ± 0.2 kpc. The derived angular velocity parameters are Ω 0 = 28.48 ± 0.36 km s?1 kpc?1, Ω0 = ?3.50 ± 0.08 km s?1 kpc?2, and Ω0 = 0.331 ± 0.037 km s?1 kpc?3. The influence of the spiral density wave has been detected only in the sample of clusters younger than 50 Myr. For these clusters the amplitudes of the tangential and radial velocity perturbations are f θ = 5.6 ± 1.6 km s?1 and f R = 7.7 ± 1.4 km s?1, respectively; the perturbation wavelengths are λ θ = 2.6 ± 0.5 kpc (i θ = ?11? ± 2?) and λ R = 2.1 ± 0.5 kpc (i R = ?9? ± 2?) for the adopted four-armed model (m = 4). The Sun’s phase in the spiral density wave is (χ)θ = ?62? ± 9? and (χ)R = ?85? ± 10? from the residual tangential and radial velocities, respectively.  相似文献   

14.
15.
Detectability of gravitational waves emitted by newly born, hot, rapidly rotating neutron stars as they spin down due to the r-mode instability is discussed. It is shown that differential rotation induced by r-modes plays a fundamental role in the evolution of the mode’s instability, making it more difficult to detect these gravitational waves.  相似文献   

16.
We find that faint sodium emission originating in the middle Jupiter magnetosphere has two distinct kinematical components. The “normal” signature of atoms on bound orbits with large apojoves seems always to be present, and we suggest these atoms are an extension of the bright, near-Io sodium cloud. The “fast” signature, with speeds up to at least 100 km sec?1, is seen only occasionally, and we suggest it is due to an interaction of the near-Io sodium cloud with the corotating, heavy-ion plasma. Both elastic and charge-exchange collisions seem consistent with the observed kinematical and temporal signatures. Elastic collisions seem marginally more capable of producing the high observed sodium atom speeds. We predict observable occurences of the fast component in the hours following passage of the Io sodium cloud through the plasma centrifugal symmetry surface if Io is at a favorable orbital longitude. Between 10 and 20 RJ we find an atomic sodium density ~10?2 cm?3. If the photoionization lifetime applies, an Io source of at least 1026 sodium atoms sec? is required to maintain this remote sodium population.  相似文献   

17.
18.
SOHO, the Solar and Heliospheric Observatory, is a project of international cooperation between ESA and NASA to study the Sun, from its deep core to the outer corona, and the solar wind. Three helioseismology instruments are providing unique data for the study of the structure and dynamics of the solar interior, from the very deep core to the outermost layers of the convection zone. A set of five complementary remote sensing instruments, consisting of EUV, UV and visible light imagers, spectrographs and coronagraphs, give us our first comprehensive view of the outer solar atmosphere and corona, leading to a better understanding of the enigmatic coronal heating and solar wind acceleration processes. Finally, three experiments complement the remote sensing observations by making in- situ measurements of the composition and energy of the solar wind and charged energetic particles, and another instrument maps the neutral hydrogen in the heliosphere and its dynamic change by the solar wind. This paper reports some of the first results from the SOHO mission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms: desorption resulting from H2 formation on grains, direct cosmic ray heating and cosmic ray-induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species selectivity of the desorption and the assumed threshold adsorption energies, E t), all the three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important.
Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes, we find that desorption by H2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions – rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L16 89B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号