首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Compacted clay soils are used as barriers in geoenvironmental engineering applications and are likely to be exposed to salinization and desalinization cycles during life of the facility. Changes in pore fluid composition from salinization and desalinization cycles induce osmotic suction gradients between soil–water and reservoir (example, landfill/brine pond) solution. Dissipation of osmotic suction gradients may induce osmotic swelling and consolidation strains. This paper examines the osmotic swelling and consolidation behaviour of compacted clays exposed to salinization and desalinization cycles at consolidation pressure of 200 kPa in oedometer assemblies. During salinization cycle, sodium ions of reservoir fluid replaced the divalent exchangeable cations. The osmotic swelling strain developed during first desalinization cycle was 29-fold higher than matric suction induced swelling strain of the compacted specimen. Further, the diffusion controlled osmotic swelling strain was 100-fold slower than matric suction-driven swelling process. After establishment of ion-exchange equilibrium, saturated saline specimens develop reversible osmotic swelling strains on exposure to desalinization cycles. Likewise the saturated desalinated specimen develops reversible osmotic consolidation strains on exposure to cycles of salinization. Variations in compaction dry density has a bearing on the osmotic swelling and consolidation strains, while, compaction water content had no bearing on the osmotic volumetric strains.  相似文献   

2.
静止土压力系数K0描述土体的原位应力状态,是许多工程计算的重要参数。本文通过等应变速率K0固结试验,研究原状和重塑马兰黄土的K0变化规律,并探讨这种变化与内部结构的关系。结果表明:(1)原状和重塑马兰黄土的K0均不是恒定值,根据土体结构的变化,其固结过程可分为初始阶段和稳定阶段。初始阶段K0(以K0i表示)随含水率的增加呈线性增长,稳定阶段K0(以K0s表示)随含水率的增加呈双曲线增长,且K0s始终大于K0i。(2)原状马兰黄土的K0i小于重塑马兰黄土,原因在于原状马兰黄土具有很强的簇聚结构,这种竖向结构弱化了水平应力的增长;而重塑马兰黄土趋于均质,呈各向同性,进而导致较高的K0i。(3)稳定阶段,原状马兰黄土的初始结构被破坏,与重塑马兰黄土近似,使得两者的K0s相近。(4)相较于其他类土,原状马兰黄土的...  相似文献   

3.
Expansive soils have received attentions of several investigators in the past half of century in the problematic soils context. Volume change behavior of unsaturated compacted soils in presence of water and change of degree of saturation was observed in two form of heave or collapse. Low water content and low density compacted soils in presence of enough surcharge pressure lose stability and collapse, because of their metastable and susceptible structure to change of degree of saturation. Free-swell and swelling pressure of five compacted clays, covering low to high plastic clays have been investigated in respect to compaction states and swelling pressure was compared with collapse pressure threshold. The results of experiments were utilized in two Artificial Neural Networks to predict free-swell percent and swelling pressure of a soil sample based on index properties and compaction state.  相似文献   

4.

This paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.

  相似文献   

5.
Li  Zhenze  Su  Grant  Zheng  Quinn  Nguyen  Thanh Son 《Acta Geotechnica》2020,15(3):635-653

Significant chemical influence on the swelling potential of MX-80 bentonite was observed during swelling tests where specimens were hydrated with highly concentrated brine. The maximum swelling pressure for specimens hydrated with brine was about 30% of the maximum swelling pressure for the same specimens hydrated with de-ionized water. The maximum swelling pressure was attained within tens of hours of brine infiltration and further decreased by half within a year. A fully coupled hydro–mechanical–chemical (HMC) dual-porosity model is proposed in this paper to interpret the swelling behaviour of MX-80 when infiltrated with brine. The dependence of hydraulic and mechanical properties on such factors as porosity, salinity and water content was investigated. A nonlinear elastic constitutive model was proposed to correlate the swelling pressure with the variation in the microporosity. The chemical effects on the mechanical behaviour were coupled at the micropore level. A number of relationships have been developed for MX-80, i.e. micropore permeability as a function of void ratio, water retention characteristics of micropores and macropores, micropore dependence on water content and the diffusion coefficients of the two types of pore structure. The proposed model was successful in reproducing both quantitatively and qualitatively the experimental results from two sets of infiltration experiments on compacted MX-80 bentonite.

  相似文献   

6.
The main objective of this paper is to examine how different engineering soils react to environmental variations and to provide correlations to characterize their behaviour under null external mechanical stress. Two French and two Algerian soils with liquid limits ranging from 36 to 112 were prepared under both slurry and Proctor compaction conditions, and then subjected to drying–wetting paths with suction controlled from several kPa to several hundreds of MPa. Experimental results are presented in five diagrams to show globally and simultaneously the shrinkage–swelling, saturation–desaturation and water retention characteristics. A reasonable consistency was observed between the oedometric and drying curves of slurry, confirming the equivalence between hydraulic loading (suction) and mechanical loading (consolidation stress) on the volume change behaviour of different soils. As an intrinsic parameter of soil nature, liquid limit was found to have a significant influence on the shrinkage limit, air-entry suction and compressibility of both slurry and compacted samples. For that reason, correlations between these characteristics and liquid limit were set up, providing a good basis for a first estimation of the drying–wetting curves. At the micro-scale, new experimental results were obtained: either on drying or wetting path, the micro-pores were almost unaffected, whereas, when matrix suction increased from 0.1 to 8 MPa, the volume of macro-pores decreased to quasi-closure. At last, the analogy between the compaction and drying–wetting curves, and the comparison of different methods to determine the water retention curve were addressed. Such analogies and comparisons contribute to a better understanding of the mechanisms of mechanical stress and suction.  相似文献   

7.
Liu  Zhang-Rong  Ye  Wei-Min  Cui  Yu-Jun  Zhu  He-Hua  Wang  Qiong  Chen  Yong-Gui 《Acta Geotechnica》2021,16(10):3145-3160

Bentonite pellets are recognized as good buffer/backfill materials for sealing technological voids in high-level radioactive waste (HLW) repository. Compared to that of a traditional compacted bentonite block, one of the most important particularities of this material is the initially discrete pellets and the inevitable heterogeneous porosity formed, leading to a distinctive water retention behaviour. In this paper, water retention and mercury intrusion porosimetry (MIP) tests were conducted on pellet mixture (constant volume), single pellet (free swelling) and compacted block (constant volume) of GMZ bentonite, water retention properties and pore structure evolutions of the specimens were comparatively investigated. Results show that the water retention properties of the three specimens are almost similar to each other in the high suction range (>?10 MPa), while the water retention capacity of pellet mixture is lower than those of the compacted block and single pellet in the low suction range (<?10 MPa). Based on the capillary water retention theory (the Young–Laplace equation), a new concept ‘saturated void ratio’ that was positively related to water content and dependent on pore size distribution of the specimen was defined. Then, according to the product of saturated void ratio and water density in saturated void, differences of water retention properties for the three specimens at low suctions were explained. Meanwhile, MIP tests indicate that as suction decreases, the micro- and macrovoid ratios of pellet mixture and compacted block decrease as the mesovoid ratio increases, while all the void ratios of single pellets increase. This could be explained that upon wetting, water is successively adsorbed into the inter-layer, inter-particle and inter-pellet voids, leading to the subdivision of particles and swelling of aggregates and pellets. Under constant volume condition, aggregates and pellets tend to swell and fill into the inter-aggregates or inter-pellets voids. While under free swelling condition, the particles and aggregates in a single pellet tend to swell outward rather than squeezing into the inter-aggregate voids, leading to the expansion of the pores and even formation of cracks. Results including the effects of initial conditions (initial dry density and fabric) and constraint conditions (constant volume or free swelling) on the water retention capacity and pore structure evolution reached in this work are of great importance in designing of engineering barrier systems for the HLW repository.

  相似文献   

8.
The paper presents the results of an experimental study on the effects of the initial water content and dry density on the soil–water retention curve and the shrinkage behavior of a compacted Lias-clay. The initial conditions after compaction (initial water content and initial dry density) have been chosen on the basis of three Proctor tests of different compaction efforts. According to the eight chosen initial conditions clay samples have been compacted statically. The relation between total suction and water content was determined for the drying path starting from the initial conditions without previous saturation of the specimens. A chilled-mirror dew-point hygrometer was used for the suction measurements. For the investigation of the shrinkage behavior cylindrical specimens were dried to desired water contents step-by-step without previous saturation. The volume of the specimens was measured by means of a caliper. Based on the test results the influence of different initial conditions on the soil suction and the shrinkage behavior is analyzed. The soil–water retention curves obtained in terms of the gravimetric water content are independent of the initial dry density. At water contents above approximately 11–12.5% a strong influence of the compaction water content is observed. At smaller water contents, the soil–water retention curve is independent of the compaction water content. The results of the shrinkage tests show that the influence of the compaction dry density on the shrinkage behavior is negligible. Similar to the drying behavior of saturated samples a primary and a residual drying process could be distinguished. The primary drying process is strongly influenced by the initial water content. In contrast, the rate of the volume change of the residual drying process is unaffected by the initial water content.  相似文献   

9.
The paper deals with an experimental investigation aimed at studying microstructural features and their consequences on water retention properties of statically compacted unsaturated silt. The evolution of the microstructure of the aggregate fabric induced by compaction is investigated by studying the pore size distribution changes under different initial conditions (void ratio and water content). The material used is low plasticity silt from Jossigny near Paris, France. A series of mercury intrusion porosimetry tests (MIP) were performed at different void ratios and water contents to provide microstructural information. The arrangement of aggregation/particles and pore network was also investigated with environmental scanning electron microscopy (ESEM). The MIP data were used to determine the water retention curve on drying for the specific pore network configuration induced on compaction. The MIP data were used to formulate and calibrate a multimodal water retention model for a specific pore network configuration, which is obtained by linear superposition of subcurves of a modified van Genuchten type. The study is then complemented with controlled suction oedometer tests on compacted samples to obtain the water retention properties of the material at two different void ratios. Finally, we compare the water retention properties obtained by the simulated progression of the different pore network configurations induced on the hydraulic path with the water retention properties under suction-controlled conditions. Good agreement between the two methods for the drying path is reached.  相似文献   

10.
Municipalities and recycling and environmental authorities are concerned about the growing amount of carpet waste produced by household, commercial and industrial sectors. It is reported that 500,000 tonnes of carpet waste fibre are plunged into landfills annually in the UK. In the United States of America, around 10 million tonnes of textile waste was generated in 2003. In geotechnical engineering, expansive clay soils are categorised as problematic soils due to their swelling behaviour upon increase in the moisture content. The problematic nature of such soils is intensified with the increase in the plasticity index. This paper presents results of a comprehensive investigation into utilisation of carpet waste fibres in order to improve the swelling characteristics of compacted cohesive soils. Therefore, two different clay soils with markedly different plasticity indices (i.e. 17.0 and 31.5 %) were treated with two different types of carpet waste fibre. Waste fibres were added to prepare specimens with fibre content of 1, 3 and 5 % by dry weight of soil. Soil specimens with different dry unit weights and moisture contents were prepared so as to the swelling behaviour of fibre reinforced compacted clays is completely attained under various scenarios. The results indicated that the behaviour of the fibre reinforced soils seems highly dependent on the initial compaction state and secondary on the moisture content. It was found that the swelling pressure drops rapidly as the percentage of fibre increases in samples prepared at the maximum dry unit weight and optimum moisture content. Reducing the dry unit weight, while maintaining constant moisture content or increasing the moisture content at constant dry unit weight was found to reduce the swelling pressure.  相似文献   

11.
The behaviour of naturally occurring geological materials such as clay and sand depends on many factors. For example, stresses, strains, previous stress history, mineralogy and the depositional environment all contribute in some degree to a characteristic that all natural soils share, namely “structure”. The structure of clay, or more generally, the microstructure of microscopically sized clay mineral particles, is just as important as the many other parameters that are used to quantify the performance of clays. This paper examines the microstructure that results from the particle arrangement brought about during reconstitution in the laboratory and considers its relevance to the resulting stress–strain behaviour.

Samples of reconstituted kaolin clay were produced using two different procedures. In the first series of tests, kaolin slurry was simply isotropically compressed in one increment. In the second series, the slurry was first isotropically compressed to a low pressure and then completely remoulded. This was followed by isotropic compression to the same pressure as the other series. Specimens were taken from the two series of samples, reconsolidated at various isotropic pressures, and sheared under undrained conditions.

Scanning Electron Microscope (SEM) images indicated that the monotonically compressed samples (Series 1) exhibited an anisotropic microstructure that was distinct from the remoulded (Series 2) samples. Significant differences were also found in the consolidation and stress–strain characteristics of the samples produced in the two series.  相似文献   


12.
牛庚  孙德安  韦昌富  颜荣涛 《岩土力学》2018,39(4):1337-1345
采用压力板法、滤纸法和饱和盐溶液蒸气平衡法,分别对取自广西岑溪滑坡现场的全风化泥岩原状样进行了持水特性试验,得到全吸力范围内的持水曲线;用压汞试验测试经受不同吸力原状样的孔径分布,并用此分布曲线推算持水曲线。试验结果表明:全风化泥岩原状样的进气值为110 kPa,用3种方法可测得全风化泥岩的全吸力范围内的持水曲线。全风化泥岩原状样的孔隙大小分布可认为单峰结构,其孔隙的孔径主要分布在10~1 000 nm,但也有孔径在50~300 ?m范围内的小部分孔隙存在,主要因为原状样中存在少量的原生裂隙。利用3个经受过不同吸力土样的孔径分布分别推算其持水曲线,3条曲线组合与实测值比较表明,用一次压汞试验结果(孔径大小分布曲线)预测全吸力范围内的持水曲线精度较低,而选取各自吸力范围段的预测曲线组合而成全吸力范围持水曲线,与试验数据更为接近。  相似文献   

13.
14.

Lateritic clay is well recognized to contain significant amount of iron and aluminium oxides (sesquioxide). These oxides enhance the formation of soil aggregates which would greatly affect soil structure. So far, no study has been carried out purposely to investigate the influence of aggregate-dependent structure on the mechanical behaviour of the lateritic clay. In this study, structure effects on the compression and shear behaviour of a saturated lateritic clay were studied. Intact, recompacted and reconstituted specimens were studied through oedometer, isotropic compression and consolidated undrained shear tests. Microstructure of these specimens was determined using the mercury intrusion porosimetry and scanning electron microscopy (SEM) techniques and then used to explain the observed behaviour. It was found that the compressibility of recompacted/reconstituted specimens was about 90% larger than intact specimen. Different from soft clay, the influence of microstructure does not show an obvious reduction in compressibility after yielding. The peak shear strength of intact specimen was about 100% higher than those of reconstituted/recompacted specimens. The significant difference in compression and shear behaviour is mainly because the aggregates of intact specimen were about 90% larger than those of reconstituted/recompacted specimens, as revealed by the SEM results. As a result, particle contacts forming the force chain were therefore larger in the intact specimen. The intact specimen therefore became less compressible and more dilative.

  相似文献   

15.
Tests on specimens of reconstituted illitic clay have examined the influence of temperature on the mechanical behaviour of clay soils. The program involved consolidation to effective confining pressures up to 1.5 MPa, heating to 100°C, and tests on normally consolidated and overconsolidated specimens with OCR = 2. The tests included isotropic consolidation, undrained triaxial compression with pore water pressure measurement, drained tests along controlled stress paths to investigate yielding behaviour, and undrained tests which involved heating and measurement of the resulting induced pore water pressures. The large strain strength envelope is independent of temperature. However, peak undrained strengths increase with temperature because smaller pore water pressures are generated during shearing. An important contribution from the study is a series of results for the yielding of illitic clay at three different temperatures. For the first time, there is clear evidence of yield loci decreasing in size with increasing temperature. An associated flow rule can be assumed without serious error. The results contribute to the confirmation of a thermal elastic-plastic soil model developed by the authors from cam clay following the addition of a small number of extra assumptions. Depending on the initial stress state, heating under undrained conditions may produce shear failure.  相似文献   

16.
Burland于1990年提出重塑土的固有压缩特性,为定量评价天然沉积结构性黏性土的力学性质提供参考依据。通过对四种液限的重塑土进行大量的室内一维固结试验,重塑土样的初始含水率调整扩大为液限的0.7~2.0倍,探讨了初始含水率,液限对重塑土固有压缩特性的影响。结果表明:重塑土压缩曲线不仅与土的液限有关,还受初始含水率的影响; 在较低固结压力下,采用Burland引入的孔隙指数不能将不同初始含水率的重塑土压缩曲线归一化,但当固结压力超过约25kPa时,各种压缩曲线均可较好地归一化至重塑土的固有压缩曲线(ICL); 此外,重塑土固有压缩参数并非仅与土的液限有关,试验实测的结果显示出与Burland的固有压缩参数经验有一定的偏离,结合试验结果对其进行了修正。  相似文献   

17.
In this study, water retention tests under free swelling conditions were performed to investigate the water intake (or loss) behaviour of compacted GMZ bentonite. First, the water retention characteristics were investigated, and then the microscopic pore structure was observed by environmental scanning electron microscope (ESEM). The results indicate that GMZ bentonite has a strong swelling (or a limited shrinkage ability) due to water intake (loss). The suction behaviour of GMZ bentonite is similar to MX80 bentonite and FEBEX bentonite. We also find that the confinement conditions can affect the suction behaviour of the material, especially at high relative humidity (RH). Additionally, a mathematic model can fit the mass change data very well. Microscopic tests show that the granular sensation of GMZ bentonite is obvious for a sample at low RH. With the increase in RH, the surface of GMZ bentonite becomes more smooth. The differences in the porosities calculated by the macroscopic and microscopic tests can be attributed to image resolution. The inter-laminar pores and intra-aggregate pores cannot be observed by the ESEM method. In addition, ESEM observation can provide an intuitive basis for the further research of the seepage property of GMZ bentonite.  相似文献   

18.
The 2010–2011 Canterbury earthquake sequence in New Zealand exposed loess-mantled slopes in the area to very high levels of seismic excitation (locally measured as >2?g). Few loess slopes showed permanent local downslope deformation, and most of these showed only limited accumulated displacement. A series of innovative dynamic back-pressured shear box tests were undertaken on intact and remoulded loess samples collected from one of the recently active slopes replicating field conditions under different simplified horizontal seismic excitations. During each test, the strength reduction and excess pore water pressures generated were measured as the sample failed. Test results suggest that although dynamic liquefaction could have occurred, a key factor was likely to have been that the loess was largely unsaturated at the times of the large earthquake events. The failure of intact loess samples in the tests was complex and variable due to the highly variable geotechnical characteristics of the material. Some loess samples failed rapidly as a result of dynamic liquefaction as seismic excitation generated an increase in pore water pressure, triggering rapid loss of strength and, thus, of shear resistance. Following initial failure, pore pressure dissipated with continued seismic excitation and the sample consolidated, resulting in partial shear strength recovery. Once excess pore water pressures had dissipated, deformation continued in a critical effective stress state with no further change in volume. Remoulded and weaker samples, however, did not liquefy and instead immediately reduced in volume with an accompanying slower and more sustained increase in pore pressure as the sample consolidated. Thereafter, excess pressures dissipated and deformation continued at a critical state. The complex behaviour explained why, despite exceptionally strong ground shaking, there was only limited displacement and lack of run-out: dynamic liquefaction was unlikely to occur in the freely draining slopes. Dynamic liquefaction, however, remained a plausible mechanism to explain loess failure in some of the low-angle toe slopes, where a permanent water table was present in the loess.  相似文献   

19.
为了研究膨胀土在天然环境下的动力特性,本文利用装有弯曲元的三轴仪对南阳膨胀土原状样和重塑样进行了最大剪切模量的测试试验。试验包括在不同围压下的饱和原状南阳膨胀土最大剪切模量测试;将初始干密度相近的原状样和重塑样分别进行脱湿和吸湿,量测整个过程中最大剪切模量的变化,并结合孔隙比进行分析。试验结果表明:饱和南阳膨胀土的最大剪切模量随着围压增大而增大;脱湿过程中南阳膨胀土最大剪切模量与含水率关系曲线要高于吸湿过程的曲线,即最大剪切模量与含水率关系存在滞回特性,这主要是吸力作用的缘故;初始干密度相近条件下原状样的最大剪切模量比重塑样的要小,这是由于原状样内部存在较多大孔隙。本文最后对饱和土最大剪切模量公式进行改进,使之适用于非饱和原状南阳膨胀土最大剪切模量的预测。  相似文献   

20.
采用大型动三轴试验仪进行重塑高岭土试样的循环三轴试验,试样直径为300 mm,高度为600 mm。圆柱体试样中心放置了一块竖向排水板,在循环加载试验进行时和结束后都可进行径向排水。试验结果验证了径向排水可以有效地消散循环荷载引起的孔隙水压力。通过结合径向固结理论与不排水循环加载土体模型,提出了一个循环荷载作用下径向固结模型,用来描述在允许径向排水的情况下软黏土在循环荷载作用下的孔压累积特性。模型中考虑了应力历史和孔隙水压力消散对孔隙水压力生成的影响,并用大型循环三轴试验结果进行验证。研究发现,当施加较大循环荷载时,径向排水减缓了孔隙水压力累积到临界值的速率,因而土体在破坏前可以经历更多次的循环荷载;当施加中等循环荷载时,径向排水可有效阻止孔隙水压力增长至临界值。除此之外,还研究了加载间歇期对孔压累积特性的影响,结果显示3组循环加载结束后,累积孔隙水压力开始减小,表明之后更多的循环加载并不会引起孔隙水压力的累积增长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号