首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2D random finite element method and the one-dimensional and 2D random limit equilibrium method are used to investigate the influence of spatial variability of soil strength parameters on the probability of failure of simple soil slopes with cohesive undrained shear strength. The combined influence of spatial variability of soil properties and cross-correlation between undrained soil strength and unit weight on the computed probability of failure is explored. The paper identifies conditions where numerical outcomes are similar and where they are not. The limitations of each analysis method are described and implications to analysis and design are identified.

Abbreviations: FEM: finite element method; LEM: limit equilibrium method; RFEM: random finite element method; RLEM: random limit equilibrium method  相似文献   

2.
3.
蒋水华  李典庆 《岩土力学》2015,36(Z1):629-633
多层土坡在岩土工程实际中十分常见,不仅土体参数存在一定的空间变异性,而且土体框架呈现明显的层状分布特征,然而目前对考虑土体参数空间变异性的多层土坡稳定可靠度研究的远远不够。提出了基于多重响应面边坡系统可靠度分析的蒙特卡洛模拟(MCS)方法,给出了计算流程图,系统地研究了考虑土体参数空间变异性的多层土坡系统可靠度问题。结果表明,提出方法能够有效地分析考虑参数空间变异性低失效概率水平的多层土坡系统可靠度问题,并且具有较高的参数敏感性分析计算效率。  相似文献   

4.
Reliability analysis of bearing capacity of a strip footing at the crest of a simple slope with cohesive soil was carried out using the random finite element method (RFEM). Analyses showed that the coefficient of variation and the spatial correlation length of soil cohesion can have a large influence on footing bearing capacity, particularly for slopes with large height to footing width ratios. The paper demonstrates cases where a footing satisfies a deterministic design factor of safety of 3 but the probability of design failure is unacceptably high. Isotropic and anisotropic spatial variability of the soil strength was also considered.  相似文献   

5.
李少龙  张家发  张伟  肖利 《岩土力学》2009,30(10):3168-3172
在汉江遥堤典型堤段对堤后200 m?100 m范围内表层土取样进行渗透性试验,基于试验结果分析了土体渗透系数的随机性和结构性的空间变异特征,结果表明细砂渗透系数在水平方向具有各向同性,空间结构可用指数模型描述。采用转向带法进行渗透系数随机场模拟,从基本统计量、空间结构等方面进行的分析表明,转向带法模拟结果保持了原随机场的统计特性,具有较好的收敛性。  相似文献   

6.
The failure probability of geotechnical structures with spatially varying soil properties is generally computed using Monte Carlo simulation (MCS) methodology. This approach is well known to be very time-consuming when dealing with small failure probabilities. One alternative to MCS is the subset simulation approach. This approach was mainly used in the literature in cases where the uncertain parameters are modelled by random variables. In this article, it is employed in the case where the uncertain parameters are modelled by random fields. This is illustrated through the probabilistic analysis at the serviceability limit state (SLS) of a strip footing resting on a soil with a spatially varying Young's modulus. The probabilistic numerical results have shown that the probability of exceeding a tolerable vertical displacement (P e) calculated by subset simulation is very close to that computed by MCS methodology but with a significant reduction in the number of realisations. A parametric study to investigate the effect of the soil variability (coefficient of variation and the horizontal and vertical autocorrelation lengths of the Young's modulus) on P e was presented and discussed. Finally, a reliability-based design of strip footings was presented. It allows one to obtain the probabilistic footing breadth for a given soil variability.  相似文献   

7.
Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of cross‐correlated soil properties is presented and applied to study the bearing capacity of spatially random soil with different autocorrelation distances in the vertical and horizontal directions. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two‐dimensional cross‐correlated non‐Gaussian random fields are generated based on a Karhunen–Loève expansion in a manner consistent with a specified marginal distribution function, an autocorrelation function, and cross‐correlation coefficients. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses was performed to study the effects of uncertainty due to the spatial heterogeneity on the bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to geotechnical problems and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
降雨条件下考虑饱和渗透系数变异性的边坡可靠度分析   总被引:1,自引:0,他引:1  
土体饱和渗透系数表现为天然的变异性,为此基于Green-Ampt模型建立了考虑饱和渗透系数变异性的降雨入渗物理模型,并藉此模型确定了坡体湿润锋深度和含水率分布。然后结合无限长非饱和土边坡稳定模型得到解析形式的反映边坡稳定性的极限状态函数。采用Monte Carlo法对饱和渗透系数进行随机抽样并最终建立降雨条件下考虑饱和渗透系数变异性的边坡概率分析框架。针对一假想边坡,探讨了饱和渗透系数的变异系数、降雨持时和降雨强度对边坡破坏概率以及破坏发生时间概率分布的影响,结果表明:在降雨初期,边坡的破坏概率随饱和渗透系数变异性的增强而逐渐增加,但随着降雨的持续,破坏概率开始随变异性的增强而显著降低;滑坡最可能发生时间的大小并不受饱和渗透系数变异性的影响,而是直接取决于降雨强度;滑坡最可能发生时间所对应的概率却随变异性的增强而逐渐减小。  相似文献   

9.
This paper develops a risk de-aggregation and system reliability approach to evaluate the slope failure probability, pf, using representative slip surfaces together with MCS. An efficient procedure is developed to strategically select the candidate representative slip surfaces, and a risk de-aggregation approach is proposed to quantify contribution of each candidate representative slip surface to the pf, identify the representative slip surfaces, and determine how many representative slip surfaces are needed for estimating the pf with reasonable accuracy. Risk de-aggregation is performed by collecting the failure samples generated in MCS and analyzing them statistically. The proposed methodology is illustrated through a cohesive soil slope example and validated against results from previous studies. When compared with the previous studies, the proposed approach substantially improves the computational efficiency in probabilistic slope stability analysis. The proposed approach is used to explore the effect of spatial variability on the pf. It is found that, when spatial variability is ignored or perfect correlation assumed, the pf of the whole slope system can be solely attributed to a single representative slip surface. In this case, it is theoretically appropriate to use only one slip surface in the reliability analysis. As the spatial variability becomes growingly significant, the number of representative slip surfaces increases, and all representative slip surfaces (i.e., failure modes) contribute more equally to the overall system risk. The variation of failure modes has substantial effect on the pf, and all representative surfaces have to be incorporated properly in the reliability analysis. The risk de-aggregation and system reliability approach developed in this paper provides a practical and efficient means to incorporate such a variation of failure modes in probabilistic slope stability analysis.  相似文献   

10.
Summary A procedure for the stability analysis and design of geosynthetic reinforced soil slopes over a firm foundation is described. Firstly the unreinforced slope is analysed, and for this a circular failure method is used which allows a surcharge load to be taken into account. Any method of slip circle analysis could be used to identify the coordinates of the centre of the slip circle, its radius and the minimum factor of safety. In this study, both internal and external stability analysis of the reinforced slope is presented. Internal stability deals with the resistance to pullout failure within the reinforced soil zone resulting from the soil/reinforcement interaction. The external stability is considered by an extension of the bilinear wedge method which allows a slip plane to propagate horizontally along a reinforcing sheet. The results for total tensile force, internal and external stability are presented in the form of charts.For given properties of soil and slope geometry, the required strength of the geosynthetic and the length of reinforcement at the top and bottom of the slope can be determined using these charts. The results are compared with the published design charts by Schmertmannet al. (1987).  相似文献   

11.
Spatial variability of soil materials has long been recognised as an important factor influencing the reliability of geo-structures. This study stochastically investigates the influence of spatial variability of shear strength on the stability of heterogeneous slopes, focusing on the auto-correlation function, auto-correlation distance and cross-correlation between soil parameters. The finite element method is merged with the random field theory to probabilistically evaluate factor of safety and probability of failure via Monte-Carlo simulations. The simulation procedure is explained in detail with suggestions on improving efficiency of the Monte-Carlo process. A simple procedure to create cross-correlation between random variables, which allows direct comparison of the influence of each strength variable, is discussed. The results show that the auto-correlation distance and cross-correlation can significantly influence slope stability, while the choice of auto-correlation function only has a minor effect. An equation relating the probability of failure with the auto-correlation distance is suggested in light of the analyses performed in this work and other results from the literature.  相似文献   

12.
Probabilistic analysis has been used as an effective tool to evaluate uncertainty so prevalent in variables governing rock slope stability. In this study a probabilistic analysis procedure and related algorithms were developed by extending the Monte Carlo simulation. The approach was used to analyze rock slope stability for Interstate Highway 40 (I-40), North Carolina, USA. This probabilistic approach consists of two parts: analysis of available geotechnical data to obtain random properties of discontinuity parameters; and probabilistic analysis of slope stability based on parameters with random properties. Random geometric and strength parameters for discontinuities were derived from field measurements and analysis using the statistical inference method or obtained from experience and engineering judgment of parameters. Specifically, this study shows that a certain amount of experience and engineering judgment can be utilized to determine random properties of discontinuity parameters. Probabilistic stability analysis is accomplished using statistical parameters and probability density functions for each discontinuity parameter. Then, the two requisite conditions, kinematic and kinetic instability for evaluating rock slope stability, are determined and evaluated separately, and subsequently the two probabilities are combined to provide an overall stability measure. Following the probabilistic analysis to account for variation in parameters, results of the probabilistic analyses were compared to those of a deterministic analysis, illustrating deficiencies in the latter procedure. Two geometries for the cut slopes on I-40 were evaluated, the original 75° slope and the 50° slope which has developed over the past 40 years of weathering.  相似文献   

13.
The conventional liquefaction potential assessment methods (also known as simplified methods) profoundly rely on empirical correlations based on observations from case histories. A probabilistic framework is developed to incorporate uncertainties in the earthquake ground motion prediction, the cyclic resistance prediction, and the cyclic demand prediction. The results of a probabilistic seismic hazard assessment, site response analyses, and liquefaction potential analyses are convolved to derive a relationship for the annual probability and return period of liquefaction. The random field spatial model is employed to quantify the spatial uncertainty associated with the in-situ measurements of geotechnical material.  相似文献   

14.
The study presents a recent slope failure in India which resulted in the burial of a village and claimed large number of lives. Current methods of probabilistic back analysis incorporate uncertainty in the analysis but do not consider spatial variability. In this study, back analysis is performed using Bayesian analysis in conjunction with random field theory. The probabilistic method is shown to be efficient in back-analysing a slope failure. It also provides confidence in parameter values to be used for post-failure slope design. The back analysis method which does not consider spatial variability overestimates the uncertainty in analysis, which can lead to uneconomical slope remediation design and measures.  相似文献   

15.
考虑参数空间变异性的非饱和土坡可靠度分析   总被引:2,自引:0,他引:2  
在考虑多个土体参数空间变异性的基础上,提出了基于拉丁超立方抽样的非饱和土坡稳定可靠度分析的非侵入式随机有限元法。利用Hermite随机多项式展开拟合边坡安全系数与输入参数间的隐式函数关系,采用拉丁超立方抽样技术产生输入参数样本点,通过Karhunen-Loève展开方法离散土体渗透系数、有效黏聚力和内摩擦角随机场,并编写了计算程序NISFEM-KL-LHS。研究了该方法在稳定渗流条件下非饱和土坡可靠度分析中的应用。结果表明:非侵入式随机有限元法为考虑多个土体参数空间变异性的非饱和土坡可靠度问题提供了一种有效的分析工具。土体渗透系数空间变异性和坡面降雨强度对边坡地下水位和最危险滑动面位置均有明显的影响。当降雨强度与饱和渗透系数的比值大于0.01时,边坡失效概率急剧增加。当土体参数变异性或者参数间负相关性较大时,忽略土体参数空间变异性会明显高估边坡失效概率。  相似文献   

16.
System effects should be considered in the probabilistic analysis of a layered soil slope due to the potential existence of multiple failure modes. This paper presents a system reliability analysis approach for layered soil slopes based on multivariate adaptive regression splines (MARS) and Monte Carlo simulation (MCS). The proposed approach is achieved in a two-phase process. First, MARS is constructed based on a group of training samples that are generated by Latin hypercube sampling (LHS). MARS is validated by a specific number of testing samples which are randomly generated per the underlying distributions. Second, the established MARS is integrated with MCS to estimate the system failure probability of slopes. Two types of multi-layered soil slopes (cohesive slope and cφ slope) are examined to assess the capability and validity of the proposed approach. Each type of slope includes two examples with different statistics and system failure probability levels. The proposed approach can provide an accurate estimation of the system failure probability of a soil slope. In addition, the proposed approach is more accurate than the quadratic response surface method (QRSM) and the second-order stochastic response surface method (SRSM) for slopes with highly nonlinear limit state functions (LSFs). The results show that the proposed MARS-based MCS is a favorable and useful tool for the system reliability analysis of soil slopes.  相似文献   

17.
A framework alternative to that of classical slope stability analysis is developed, wherein the soil mass is treated as a continuum and in-situ soil stresses and strengths are computed accurately using inelastic finite element methods with general constitutive models. Within this framework, two alternative methods of stability analysis are presented. In the first, the strength characteristics of the soil mass are held constant, and the gravitational loading on the slope system is increased until failure is initiated by well-defined mechanisms. In the second approach, the gravity loading on the slope system is held constant, while the strength parameters of the soil mass are gradually decreased until well-defined failure mechanisms develop. Details on applying both of the proposed methods, and comparisons of their characteristics on a number of solved example problems are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
非饱和土边坡稳定分析方法探讨   总被引:2,自引:1,他引:2  
李荣建  于玉贞  邓丽军  李广信 《岩土力学》2007,28(10):2060-2064
在对非饱和土边坡进行稳定分析时,应该全面地考虑基质吸力对边坡稳定的贡献。首先,分别探讨了基于Fredlund非饱和土强度表达式和Bishop非饱和土有效应力强度公式将强度折减有限元法推广到非饱和土边坡稳定分析中的具体方法;然后,开发了可以考虑基质吸力两种处理方法的强度折减有限元计算程序;最后,给出了一个非饱和土边坡稳定分析的对比算例,说明了二者的不同特点。  相似文献   

19.
活树桩固坡对边坡稳定性影响的数值分析   总被引:13,自引:0,他引:13  
作为一种经济、环保的植物固坡方法,活树桩在发达国家得到了较为广泛的应用.笔者介绍了活树桩固坡方法的应用和施工方法,讨论了其加固机理.采用弹塑性有限元分析活树桩固坡对边坡稳定性的影响,研究了活树桩的入土长度、加固位置、数量、角度及其根系发展等因素对边坡安全系数影响的规律.  相似文献   

20.
The design of soil consolidation via prefabricated vertical drains (PVDs) has been traditionally carried out deterministically and thus can be misleading due to the ignorance of the uncertainty associated with the inherent (spatial) variation of soil properties. To treat such uncertainty in the design process of soil consolidation by PVDs, stochastic approaches that combine the finite element method with the Monte Carlo technique (FEMC) have been usually used. However, such approaches are complex, computationally intensive and time consuming. In this paper, a simpler reliability-based semi-analytical (RBSA) method is proposed as an alternative tool to the complex FEMC approach for soil consolidation by PVDs, considering soil spatial variability. The RBSA method is found to give similar results to those obtained from the FEMC approach and can thus be used with confidence in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号