首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BUSS observations of the profiles of two well observed spectral lines in the ultraviolet spectrum of CMi (Procyon; F5 IV–V) are analysed with a Fourier transform method in order to determine values of various parameters of the velocity field of the upper photosphere. We find a microturbulent line-of-sight velocity componentL = 0.9 ± 0.4 km s–1, a macroturbulent velocity componentL M = 5.3 ± 0.2 km s–1, and a rotational velocity componentv R sini=10.0±1.2 km s–1. In these calculations a single-moded sinusoidal isotropic macroturbulent velocity function was assumed. The result appears to be sensitive to the assumed shape of the macroturbulence function: for an assumed Gaussian shape the observations can be described withv R sini=4 km s–1 andL M = 11.6 ± 2.7 km s–1. A comparison is made with other results and theoretical predictions.  相似文献   

2.
An object located approximately atl=8°,b=–4° with a mean radial velocity of –212.3 km s–1 has been observed in the 21 cm neutral hydrogen line. The mean weighted velocity dispersion is 11.2 km s–1 and the total mass is estimated to be 190R 2 (kpc) solar masses. We discuss possible interpretations of the origin and nature of this object. The most likely interpretation is that we observe an expanding object which has been ejected from the galactic nucleus.  相似文献   

3.
We measure the separation velocity of opposite poles from 24 new bipoles on the Sun. We find that the measured velocities range from about 0.2 to 1 km s–1. The fluxes of the bipoles range over more than two orders of magnitude, and the mean field strength and the sizes range over one order of magnitude. The measured separation velocity is not correlated with the flux and the mean field strength of the bipole. The separation velocity predicted by the present theory of magnetic buoyancy is between 7.4Ba –1/4 cot and 13 cot km s–1, where is the elevation angle of the flux tube at the photosphere (see Figure 9), B is the mean field strength, and a is the radius of the observed bipole. The rising velocity of the top of flux tubes predicted by the theory of magnetic buoyancy is between 3.7Ba –1/4 and 6.5 km s–1. The predicted separation velocity is about one order of magnitude higher than those measured, or else the flux tubes are almost vertical at the photosphere. There is no correlation between the measured separation velocity and the theoretical value, 7.4Ba –1/4. The predicted rising velocity is also higher than the vertical velocity near the line of inversion in emerging flux regions observed by other authors.  相似文献   

4.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

5.
A study has been made of fine structure wavelength shift in the K line spectra from quiescent prominences. A persistent small scale motion is found in the prominence main body. In places where we see the characteristic thread like fine structure in the accompanying H filtergrams the average line-of-sight velocity amplitude is about 1 km s–1. A higher velocity ( 4 km s–1) is associated with a slightly coarser, mottled prominence fine structure. In the low lying regions, connecting the prominence body and the chromosphere, we do not detect any fine structure line shift (v 1/2 km s–1).  相似文献   

6.
The mass loss to be expected from the corona of a rotating F2-star is calculated. The rotation is supposed to be rigid up to a certain distances, as if it were maintained by a strong magnetic field. Dependent on the values of the rotational velocity the mass loss can increase to 26–40% forv rot up to 200 km s–1.  相似文献   

7.
The speeds of coronal mass ejection events   总被引:2,自引:0,他引:2  
The outward speeds of mass ejection events observed with the white light coronagraph experiment on Skylab varied over a range extending from less than 100 km s–1 to greater than 1200 km s–1. For all events the average speed within the field of view of the experiment (1.75 to 6 solar radii) was 470 km s–1. Typically, flare associated events (Importance 1 or greater) traveled faster (775 km s–1) than events associated with eruptive prominences (330 km s–1); no flare associated event had a speed less than 360 km s–1, and only one eruptive prominence associated event had a speed greater than 600 km s–1. Speeds versus height profiles for a limited number of events indicate that the leading edges of the ejecta move outward with constant or increasing speeds.Metric wavelength type II and IV radio bursts are associated only with events moving faster than about 400 km s–1; all but two events moving faster than 500 km –1 produced either a type II or IV radio burst or both. This suggests that the characteristic speed with which MHD signals propagate in the lower (1.1 to 3 solar radii) corona, where metric wavelength bursts are generated, is about 400 to 500 km s–1. The fact that the fastest mass ejection events are almost always associated with flares and with metric wavelength type II and IV radio bursts explains why major shock wave disturbances in the solar wind at 1 AU are most often associated with these forms of solar activity rather than with eruptive prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
Strong absorption satellite lines of CaI 6572 were found on spectrograms taken on three successive days just after the fourth contact of the 1971–72 eclipse of Zeta Aurigae. The radial velocities of the satellite lines are –88 km s–1, –74 km s–1, and –180 km–1, respectively, relative to the K-type primary star (K4 Ib). These absorptions should be due to a circumstellar cloud in which the column density of neutral calcium atoms is 1×1017 cm–2 and the turbulent velocities come to 20–50 km s–1. It is suggested that the cloud may be formed by the rocket-effect of the Lyman quanta of the B-type component (B6 V). We estimate the density in the cloud to be 2×1011 atoms cm–3 fors=10R K and 2×1010 atoms cm–3 fors=102 R K, wheres denotes the distance of the cloud from the K star andR K the K star's radius. The mass loss rate of the K-type component is also estimated to be about 10–7 M yr–1, assuming that the expansion of the K star occurs isotropically.  相似文献   

9.
We have carried out an analysis of the (0, 0) vibrational band of the CN molecule in Comet Mrkos 1957d, including the effect of collisions. We found that the sum of the squares of the residuals can be reduced by a factor of ten, if collisions account for 46±3% of the population of the lower level. A rotational temperature can be assigned to the cometary gas. The best value found was 410±40 K. The best fit for the constantR 1 was (1.07±0.10)×10–4. The velocity of the comet was left as a free parameter. We found for it a value of 34.38±0.10 km s–1. This result is in disagreement with the nuclear orbital velocity of 34.74 km s–1. The discrepancy can be explained, if the CN molecules are ejected from the cometary nucleus preferentially in the sunward direction, with a mean velocity that corresponds to the above temperature.  相似文献   

10.
According to the tangential method the productAR 0 is determined with 145.7 km s–1 from measurements of the line profiles of the 21-cm line of the neutral hydrogen by Weaver and Williams (1973). The recent individual measurements of Oort's constantA and of the distanceR 0 of the Sun from the galactic centre yields 138.5 km s–1. The mean value 142.1 kms–1 leads toA=14.56 km s–1 kpc–1 andR 0=9.76 kpc. At the galactocentric distanceR nearR 0 the angular velocity is represented by (R)=25.84–2.98 (R–9.76)+0.075 (R–9.76)2. The mass of the Galaxy amounts to 1-92×1011 .

Herrn Kollegen Prof. Dr W. Gleisberg zum 70. Geburtstag am 26.12.1973 gewidmet.

Mitteilungen Serie A.  相似文献   

11.
Karlický  Marian  Kotrč  Pavel  Kupryakov  Yurij A. 《Solar physics》2001,199(1):145-155
Large Doppler velocities with unique, almost regular elliptical features were observed in the H spectra of the May 15, 2000 eruptive prominence. These features were interpreted in the frame of axially symmetric models of the eruptive prominence. The rotational (7–60 km s–1), expansion (30–44 km s–1), axial (3–19 km s–1), and global (66–160 km s–1) prominence plasma velocities were derived. The plasma velocity patterns were compared with the observed helical structures of the H prominence. The velocities of selected H blobs in the image plane were determined. The axially symmetric detwisting process of the magnetic flux rope of the eruptive prominence was recognized.  相似文献   

12.
In this paper we study the main features of the far UV spectrum of the binary star AX Mon, observed with the IUE satellite at phase 0.568.Ions indicating a large range of ionization stages, going fromCi,Oi,Ni toSiv,Civ,Nv are present.The spectrum is dominated by shell absorption lines of Feii, Feiii, Siiii,Cii, Alii, Mgii and Niii.Two satellite components are clearly indicated in all these lines except for Niii which presents only one. Their mean velocities are +10±5 km s–1, –75±10 km s–1, and –260±15 km s–1.Red emission wings are observed in the Mgii resonant doublet at 2800 Å, which shows a P Cygni profile. Each of the absorption lines of the Mgii doublet is formed by a narrow component, which is blended with the Mgii interstellar line and a broad component, which shows a complex structure.Broad and asymmetrical profiles are observed for the Siiv,Civ, andNv resonance lines with blue edge velocities about –700±30 km s–1.  相似文献   

13.
Colliding comets in the Solar System may be an important source of gamma ray bursts. The spherical gamma ray comet cloud required by the results of the Venera Satellites (Mazets and Golenetskii, 1987) and the BATSE detector on the Compton Satellite (Meeganet al., 1992a, b) is neither the Oort Cloud nor the Kuiper Belt. To satisfy observations ofN(>P max) vsP max for the maximum gamma ray fluxes,P max > 10–5 erg cm–2 s–1 (about 30 bursts yr–1), the comet density,n, should increase asn a 1 from about 40 to 100 AU wherea is the comet heliocentric distance. The turnover above 100 AU requiresn a –1/2 to 200 AU to fit the Venera results andn a 1/4 to 400 AU to fit the BATSE data. Then the masses of comets in the 3 regions are from: 40–100 AU, about 9 earth masses,m E; 100–200 AU about 25m E; and 100–400 AU, about 900m E. The flux of 10–5 erg cm–2 s–1 corresponds to a luminosity at 100 AU of 3 × 1026 erg s–1. Two colliding spherical comets at a distance of 100 AU, each with nucleus of radiusR of 5 km, density of 0.5 g cm–3 and Keplerian velocity 3 km s–1 have a combined kinetic energy of 3 × 1028 erg, a factor of about 100 greater than required by the burst maximum fluxes that last for one second. Betatron acceleration in the compressed magnetic fields between the colliding comets could accelerate electrons to energies sufficient to produce the observed high energy gamma rays. Many of the additional observed features of gamma ray bursts can be explained by the solar comet collision source.  相似文献   

14.
Pike  C.D.  Mason  H.E. 《Solar physics》2002,206(2):359-381
An X2.3 class flare was reported on 10 April 2001 in AR 9415. A halo coronal mass ejection (CME) was associated with this flare. The Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO), which was running in its daily synoptic mode, recorded a very high-velocity ejection of plasma associated with this activity. The spatial scanning and spectral capabilities of CDS allow the measurement of both transverse and line-of-sight velocities. Components of the plasma, as seen in emission from Ov at around 2.5×105 K, reached transverse velocities in excess of 800 km s–1. The nature of the spectral line profiles suggests that a rotational motion of ±350 km s–1 was superimposed upon the general outward expansion of approximately 150 km s–1. The ejection detected using CDS was found to have a constant acceleration and is thought to be a spray of plasma with a helical structure driven by the magnetic topology.  相似文献   

15.
Hari Om Vats 《Solar physics》1992,138(2):379-386
Characteristics of flare-associated high-speed solar plasma streams are investigated using measurements from space probes and Earth-orbiting spacecraft for the period 1964–1982. The maximum observed velocity (V m) of these streams range from 400 to 850 km s–1} with peak probability for 600 km s–1}. These remain for the period of 1–10 days with the peak occurrence 3 days. The difference between the pre-stream velocity (V 0) and the maximum velocity (V m) of any high-speed stream serves as the measure of its intensity. For about 60% of the flare associated streams, (V m-V 0) is well in excess of 200 km s–1} and in some cases becomes as large as 450 km s–1}. The yearly percentage occurrence, total duration and the product of mean (V m - V 0) with total duration of the high-speed streams during the year correlates well with solar activity, e.g., maximum during high solar activity period and minimum during low solar activity. The study suggests that presence of sunspots plays a significant role in the generation of flare associated high-speed solar streams.  相似文献   

16.
During operations on the Spacelab-2 Shuttle mission, the NRL High Resolution Telescope and Spectrograph (HRTS) recorded spectra of a variety of solar features in the 1200–1700 Å wavelength region which contains spectral lines and continua well suited for investigating the temperature minimum, the chromosphere and transition zone. These data show that, at the highest spatial resolution, the transition zone spectra are broken up from a continuous intensity distribution along the slit into discrete emission elements. The average dimensions of these discrete transition zone structures is 2400 km along the slit, but an analysis of their emission measures and densities shows that the dimensions of the actual emitting volume is conciderably less. If these structures are modelled as an ensemble of subresolution filaments, we find that these filaments have typical radii of from 3 to 30 km and that the cross-sectional fill factor is in the range from 10–5 to 10–2. The transport of mass and energy through these transition zone structures is reduced by this same factor of 10–5 to 10–2 which has significant consequences for our understanding of the dynamics of the solar atmosphere. Because the HRTS transition zone line profiles are not broadened by resolved large-spatial-scale solar velocity fields, the line widths of the Civ lines have been analyzed. The average line width is 0.195 Å (FWHM) and requires an average nonthermal velocity of 16 km s–1 (most-probable) or 19 km s–1 (root-mean-square) which is lower than previously observed values.  相似文献   

17.
A first-order theory is developed for the radiative dissipation of compressive waves in the chromosphere above T min, where line radiation becomes dominant. The radiative relaxation time, which is the key to dissipation, is shown to depend on wave amplitude, falling greatly for amplitudes 2 km s–1 or more. For a given amplitude, dissipation is greatest for high frequencies, 0.1 s–1, periods 1 min. The observed short-period r.m.s. velocities ~2.4 km s–1 at the D1, level are adequate to provide dissipation balancing chromospheric emission losses.Predictions for the temperature-velocity phase difference and the phase velocity are compatible with observations.  相似文献   

18.
In the region of the formation of weak and medium-strong lines, the microturbulence increases with height (V ver=0.7–0.9 km s-1, V hor= 1.1–1.5 km s-1), the macroturbulence decreases (V ver=1.6–1.4 km s-1, V hor= 2.4–1.5 km s-1), and the total velocity field (vertical component) is depth-independent (1.7 km s-1). The empirical damping constants for Fe, Ti, Cr, Ni lines are equal 1.36, 1.76, 1.66, 1.66, respectively. The correlation length (the Kubo-Anderson process has been used) in the solar photosphere is 520–550 km.  相似文献   

19.
The coherent 5-min photospheric pressure oscillations with spherical harmonic degrees in the range 100 <l< 1000 were directly imaged over the photosphere with the monochromatic solar telescope FPSS at Meudon Observatory. Movie films were obtained with images spatially filtered to select sizes of increasing wave numbers (or l). Areas with ephemeral concentrations of coherent waves evolve in shape and may move horizontally with velocities of several tenths of km s–1. When a large number of waves are interacting, the maximum vertical velocity V max of the pulsation reaches around 1000 m s–1, irrespective of the size. Extrapolation to the ideal case of a single isolated wave gives V max proportional to size. For the areas of the smallest scale measured (l = 1000), when about 100 waves are interacting, V max is found to be 260 + 25 m s–1 at an altitude of 210 km above the reference level 5000 = 1 and increases vertically with a scale height of 750 ± 400 km.  相似文献   

20.
Summary The status of the cosmic distance scale problem in early 1989 is reviewed. Internally consistent distances to Local Group galaxies are given in Tables 5 and 6. Within the Local Group the distance scale is found to be 11±5% smaller than that previously adopted by Sandage and Tammann. Distances to nearby galaxies are used as stepping stones to the Virgo cluster. The interpretation of the Tully-Fisher observations of Virgo spirals is found to be ambiguous because it is not yet clear which spirals are cluster members and which are background objects. Distance estimates of the Virgo cluster obtained by different techniques are listed in Table 11. The distance modulus of the Virgo cluster is found to be 31.5±0.2, corresponding to a distance of 20±2 Mpc. The elliptical galaxies in the core of the Virgo cluster haveV 0=1200±46 kms–1, which corresponds toV LG=1082±48 km s–1. With an infall velocity of 250±50 km s–1 this yields a cosmological redshiftV=1332±69 km s–1, from which a Hubble parameter H0=67±8 km s–1 Mpc–1 is obtained. Space Telescope observations of distant Cepheids, Tully-Fisher observations of spirals in the Hercules eluster, and interference filter observations of Virgo planetary nebulae in the light of [OIII], should soon result in a major improvement in the accuracy with which H0 is known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号