首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Source rock extracts and crude oils from the Songliao Basin were analyzed by high-temperature gas chromatography (HTGC), gas chromatography-mass spectrometry (HTGC-MS) and gas chromatography-isotope ratio-mass spectrometry (GC-IRMS), for high molecular-weight alkanes. The distributions of n-alkanes in the Nenjiang Formation extracts are in the C14―C63 range; a bimodal distribution occurs in the C-21 and C21―40 regions. The C30―C37 n-alkanes are accompanied by C29―C35 hopanes, whereas the high molecular-weight C45―C47 n-alkanes co-occur with abundant isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The high δ 13C values of the n-alkanes and the microscopic maceral compositions indicate a highly diversified organic source input for the Nenjiang Formation source rocks, ranging from aquatic plants, blue alge-bacteria, to land plant material. In contrast, n-alkanes in the rock extracts of the Qingshankou Formation are characterized by a single modal distribution, with relatively low abundances of C29―C35 hopanes, but high molecular-weight isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The relatively low δ 13C values of C22―C44 n-alkanes and organic material compositions indicate that the source rocks in the Qingshankou Formation contain dominantly type I algal organic matter. The relative abundance of C 40 compounds in source rocks changes little at low maturity stage, but decreases drastically at higher maturity levels, with a concurrent reduction in the odd/even carbon predominance. In crude oils, in contrast, the relative abundance of C 40 compounds appears to relate closely with the oil source and oil viscosity.  相似文献   

3.
There is no temperature effect in the southern Tibetan Plateau and South Asia to the south of the Tanggula Mountains. Amount effect has been observed at a few sampling stations accounting for about a half of the statistical stations. There is notable temperature effect in the middle and northern Tibetan Plateau and its adjacent Central Asia to the north of the Tanggula Mountains. Because vapor directly originates from low-latitude oceans, the relative heavy δ18O with small variation characterizes the rainfall in South Asia. A sharp depletion of the stable isotopic compositions in precipitation takes place from Kyangjin on the southern slope of the Himalayas to the Tanggula Mountains in the middle plateau. From the Tanggula Mountains to the northern Tibetan Plateau, the δ18O in precipitation increases with increasing latitude.  相似文献   

4.
The local meteoric water line (MWL) has been established from north to south of the Tibetan Plateau based on the measured results of δD and δ18O in precipitation and river water, and the relationship between MWL and moisture origins discussed. The spatial and seasonal variations ofd in precipitation and river water on the Tibetan Plateau have been studied. Results show that the spatial and seasonal variations ofd between north and south of the Tanggula Mountains are related to different moisture origins and water recycling.  相似文献   

5.
The compound-specific stable carbon isotope compositions(δ~(13)C) of leaf wax n-alkanes from two short sediment cores recovered off the Pearl River estuary(PRE) were analyzed to check for their capability of indicating decadal scale catchment environmental change. Sedimentary long-chain n-alkanes exhibited an odd-over-even predominance, with a maximum at n-C_(29) or n-C_(31), indicating their leaf wax origin was from vascular plants. The δ~(13)C values of C_(29) and C_(31) n-alkane in all the sediment samples were in the range of -28.8‰ to -31.2‰, consistent with the C_3 plant-dominated vegetation in the Pearl River catchments. The time series of δ~(13)C records from the two cores were comparable and displayed a decreasing trend from the early 20 th century to the end of the 1970s, followed by a reversal in that change leading to continued increase for ca. 15 years. After being corrected for the effect of atmospheric CO_2 rise and δ~(13)C_(atm) decline, the δ~(13)C_(29) records largely retained their raw changing pattern; the post-1980 increase being more conspicuous. The slightly decreasing trend in corrected δ~(13)C records before around 1980 may have been caused by an increase in precipitation, whereas the subsequent increase of δ~(13)C is likely associated with the observed dry climate and/or intensive anthropogenic deforestation. Our results thus demonstrate that leaf wax n-alkanes buried in the sediments off the PRE may well reflect change in the regional climate and/or human activity in the river catchments over the past century.  相似文献   

6.
The 213 m ice core from the Puruogangri Ice Field on the Tibetan Plateau facilitates the study of the regional temperature changes with its δ 18O record of the past 100 years. Here we combine information from this core with that from the Dasuopu ice core (from the southern Tibetan Plateau), the Guliya ice core (from the northwestern Plateau) and the Dunde ice core (from the north-eastern Plateau) to learn about the regional differences in temperature change across the Tibetan Plateau. The δ 18O changes vary with region on the Plateau, the variations being especially large between South and North and between East and West. Moreover, these four ice cores present increasing δ 18O trends, indicating warming on the Tibetan Plateau over the past 100 years. A comparative study of Northern Hemisphere (NH) temperature changes, the δ 18O-reflected temperature changes on the Plateau, and available meteorological records show consistent trends in overall warming during the past 100 years.  相似文献   

7.
Revealing of the sources and distributions of sedimentary organic matter in the East China Sea (ECS) is important for understanding its carbon cycle, which has significant temporal and spatial variability due to the influences of recent climate changes and anthropogenic activities. In this study, we report the contents of both terrestrial and marine biomarkers including ∑C27+C29+C31n-alkanes (38.6-580 ng/g), C37 alkenones (5.6-124.6 ng/g), brassicasterol (98-913 ng/g) and dinosterol (125-1521 ng/g) from the surface sediments in the Changjiang River Estuary (CRE) and shelf areas of the ECS. Several indices based on biomarker contents and ratios are calculated to assess the spatial distributions of both terrestrial and marine organic matter in the ECS surface sediments, and these results are compared with organic matter distribution patterns revealed by the δ13C (−20.1‰ to −22.7‰) and C/N ratio (5-7.5) of total organic matter. The contents of terrestrial biomarkers in the ECS surface sediments decrease seaward, controlled mostly by Changjiang River (CR) inputs and surface currents; while higher contents of the two marine biomarkers (brassicasterol and dinosterol) occur in upwelling areas outside the CRE and in the Zhejiang-Fujian coastal zone, controlled mostly by marine productivity. Four proxies, fTerr(δ13C) (the fraction of terrestrial organic matter in TOC estimated by TOC δ13C), odd-alkanes (∑C27+C29+C31n-alkanes), 1/Pmar-aq ((C23+C25+C29+C31)/(C23+C25) n-alkanes) and TMBR (terrestrial and marine biomarker ratio) (C27+C29+C31n-alkanes)/((C27+C29+C31) n-alkanes+(brassicasterol+dinosterol+alkenones)), reveal a consistent pattern showing the relative contribution of terrestrial organic matter (TOM) is higher in the CRE and along the Zhejiang-Fujian coastline, controlled mostly by CR inputs and currents, but the TOM contribution decreases seaward, as the influences of the CR discharge decrease.  相似文献   

8.
In this paper, we quantify the terrestrial flux of freshwater runoff from East Greenland to the Greenland‐Iceland‐Norwegian (GIN) Seas for the periods 1999–2004 and 2071–2100. Our analysis includes separate calculations of runoff from the Greenland Ice Sheet (GrIS) and the land strip area between the GrIS and the ocean. This study is based on validation and calibration of SnowModel with in situ data from the only two long‐term permanent automatic meteorological and hydrometric monitoring catchments in East Greenland: the Mittivakkat Glacier catchment (65°N) in SE Greenland, and the Zackenberg Glacier catchment (74°N) in NE Greenland. SnowModel was then used to estimate runoff from all of East Greenland to the ocean. Modelled glacier recession in both catchments for the period 1999–2004 was in accordance with observations, and dominates the annual catchment runoff by 30–90%. Average runoff from Mittivakkat, ~3·7 × 10?2 km3 y?1, and Zackenberg, ~21·9 × 10?2 km3 y?1, was dominated by the percentage of catchment glacier cover. Modelled East Greenland freshwater input to the North Atlantic Ocean was ~440 km3 y?1 (1999–2004), dominated by contributions of ~40% from the land strip area and ~60% from the GrIS. East Greenland runoff contributes ~10% of the total annual freshwater export from the Arctic Ocean to the Greenland Sea. The future (2071–2100) climate impact assessment based on the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios indicates an increase of mean annual East Greenland air temperature by 2·7 °C from today's values. For 2071–2100, the mean annual freshwater input to the North Atlantic Ocean is modelled to be ~650 km3 y?1: ~30% from the land strip area and ~70% from the GrIS. This is an increase of approximately ~50% from today's values. The freshwater runoff from the GrIS is more than double from today's values, based largely on increasing air temperature rather than from changes in net precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

10.
Hong Xie  Xuan Zhu 《水文研究》2013,27(25):3685-3693
Evapotranspiration is an important component of the water and energy balance. It is dependent on climate. Precipitation, solar radiation, temperature, humidity, and wind all contribute to the rate of evapotranspiration. In this study, the temporal trends of reference evapotranspiration (ETref) and four main ETref drivers, namely, mean air temperature (Ta), wind speed (u2), net radiation (Rn) and actual vapour pressure (ea) from 1970 to 2009, were calculated based on 75 meteorological stations on the Tibetan Plateau. The results showed that the ETref on the Tibetan Plateau decreased on average by 0.6909 mm a‐1a‐1 from 1970 to 2009. Ta and ea showed an increasing trend, whereas u2 and Rn exhibited a decreasing trend. To explore the underlying causes of the ETref variation, an attribution analysis was performed to quantify the contribution of Ta, u2, Rn and ea, which showed that the changes in u2, Rn and ea produced the negative effect, whereas Ta produced the positive effect on ETref rates. The changes in u2 were found to produce the largest decrease (?0.7 mm) in ETref, followed by ea (?0.4 mm) and Rn (?0.1 mm). Although the significant increase in Ta had a large positive effect (0.51 mm) on ETref rates, changes in the other three variables each reduced ETref rates, resulting in an overall negative trend in ETref. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A series of allochthonous and autochthonous molecular fossils were identified from the Holocene paleosol (S0), Malan Loess and the top Lishi Loess (S1) in Jiuzhoutai loess profile in Lanzhou through the GC/MS analysis. The allochthonous molecules were transported into the Plateau by the loess grains whilst the autochthonous molecules were related to the input of the local paleo-vegetation and could be used to reconstruct the paleo-vegetation. The distribution of the autochthonous n-alkanes was discriminated from the overlapping allochthonous homologues characterized by the CPI value of unity. The dominance of autochthonous C31 n-alkane implicates the occurrence of a grassy vegetation over the Loess Plateau since the last interglacier. The warmest period of the Holocene, though dominated by grass, was additionally characterized by the relatively increased abundance of C27 n-alkane indicative of woody plants. The desert plants might occur during the last glacier. The molecular fossil record is not contradictory with the recent phytolith data, denying the occurrence of a forest over the Plateau since the last interglacier. These data from the loess molecular stratigraphy indicate the importance of the discrimination of the autochthonous molecules from the allochthonous compounds.  相似文献   

12.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

13.
The paper presents a model of the kinetics of electronically excited O2(c1Σu,v), O2(A′3Δu,v), O2(A3Σu+,v) molecules at heights of the lower thermosphere and mesosphere with allowance for electronic excitation transfer processes during molecular collisions. The model is used to calculate the relative O2(A3Σu+,v) and O2(A′3Δu,v) populations at heights of 80–110 km. The calculated populations are compared with the available literature results on experimental estimates, and good agreement is obtained. It is shown how the increase in the quenching rates of the considered states by oxygen atoms affects the calculation results.  相似文献   

14.
The carbon isotopic compositions of individual lip-ids can provide the genetic information about sedi-mentary lipids so that it has extensively applied pros-pects in geochemically studied field[1―8]. However, this applied research relies heavily on the accumula-tion of studied data in the genetic relationships between carbon isotopic compositions of individual lipids and their biological precursors in different sedi-mentary environments. Recently, the useful δ 13C data of individual lipids f…  相似文献   

15.
The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can serve as a relatively reliable indicator for terrestrial paleoclimatic and paleohydrological reconstructions.  相似文献   

16.
Climatic variations over Eastern Asia, including the Tibetan Plateau, were analysed using meteorological data for 32 points in the period 1971 to 2000. Changes in heat and water balances were examined using potential evaporation EP, and a wetness index WI, as suggested by Kondo and Xu ( 1997a,b ). Climate zones, including the humid, semi‐humid, semi‐arid and arid climate types, in Eastern Asia identified by the wetness index matched the vegetation distribution. Average monthly temperatures increased over the 30 years, with the sharpest increase in February. In general, temperature increases were larger in the north than in the south. Air temperature increased by more than 0·05 K yr−1 in northern China. The data showed that diurnal temperature ranges have decreased in recent years. From the Tibetan Plateau, through central China, to southern northeast China, there has been an increase in potential evaporation and pan evaporation, which may be related to both higher temperatures and a lack of surface water. Increasing long‐wave radiation flux is apparent in every month and in the interannual trends. This is in contrast to the solar radiation flux. On the other hand, trends for relative humidity and cloud cover were negative, but positive for water vapour pressure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Streamflow generation was investigated using isotopic and geochemical tracers in semiarid, glacier-covered, montane catchments in the upper Shule River, northeastern Tibetan Plateau. Samples from stream water, precipitation, glacier meltwater, and groundwater were collected at the Suli and Gahe catchments along the Shule River, with an area of 1908 and 4210 km2, respectively. The samples were analysed for stable isotopes of water and major ions. Results of diagnostic tools of mixing models showed that Ca2+, Mg2+ and Cl, along with δ18O and δ2H, behaved conservatively as a result of mixing of three endmembers. The three endmembers identified by the mixing analysis were surface runoff directly from precipitation, groundwater, and glacier meltwater. Streamflow was dominated by groundwater, accounting for 59% and 60% of streamflow on average in the Suli and Gahe catchments, respectively, with minimum groundwater contribution in July (47% and 50%) and maximum contribution in October (69% and 70%). The contributions of surface runoff were slightly higher in the Suli catchment (25%) than in the Gahe catchment (19%). However, the contributions of glacier meltwater were higher in the Gahe catchment (21%) compared to the Suli catchment (17%), as a result of a higher percentage of glacier covered area in the Gahe catchment. This difference followed well the non-linear power–law trend of many glacier-covered catchments around the world. As glacier retreat continues in the future, the reduction of streamflow in glacier-covered upper Shule catchment likely will be accelerated and possibly elsewhere in the Tibetan Plateau. This study suggests that it is critical to define the turning point of an accelerated reduction in glacier meltwater for glacier-covered catchments around the world in order to better assess and manage water resources.  相似文献   

18.
Glaciers are significant freshwater storage systems in western China and contribute substantially to the summertime run‐off of many large rivers in the Tibetan Plateau. Under the scenario of climate change, discussions of glacier variability and melting contributions in alpine basins are important for understanding the run‐off composition and ensuring that water resources are adequately managed and protected in the downstream areas. Based on the multisource spatial data and long‐term ground observation of climatic and hydrologic data, using the remote sensing interpretation, degree‐day model, and ice volume method, we presented a comprehensive study of the glacier changes in number, area, and termini and their impacts on summertime run‐off and water resource in the Tuotuo River basin, located in the source region of the Yangtze River. The results indicated that climate change, especially rising temperature, accelerated the glacier melting and consequently led to hydrological change. From 1969 to 2009, the glacier retreat showed an absolutely dominant tendency with 13 reduced glaciers and lost glacier area of 45.05 km2, accompanied by limited growing glaciers in the study area. Meanwhile, it indicated that annual glacial run‐off was averagely 0.38 × 108 m3, accounting for 4.96% of the total summertime run‐off, followed by the supply from precipitation and snowmelt. The reliability of this magnitude was assessed by the classic volume method, which also showed that the water resources from glacier melting in the Tuotuo River basin increased by approximate 17.11 × 108 m3, accounting for about 3.77% of the total run‐off over the whole period of 1969–2009. Findings from this study will serve as a reference for future research about glacier hydrology in regions where observational data are deficient. Also, it can help the planning of future water management strategies in the source region of the Yangtze River.  相似文献   

19.
Based on kerogen-generated hydrocarbon model, a new method to calculate hydrocarbon yields for coals and coaly samples was put forward by means of pyrolysis technique. At the same time, the empirical criteria suggested by Powell were revised. The threshold value was preliminarily defined as HC yields >30 mg HC per gram TOC for effective gas source rocks and >60 mg HC per gram TOC for effective oil source rocks. Additionally, it was also confirmed that the relative compositions of the three ranges of C1-C5 total hydrocarbons, C6-C14n-alkanes plusn-alkenes and C15+ n-alkanes plusn-alkenes from pyrolysates can be effectively used to distinguish the coal-generated hydrocarbon types.  相似文献   

20.
Petroleum mainly comprises carbon and hydrogen elements. The stable carbon isotopic analysis for whole oil was undertaken as early as the 1930s. After decades, the stable carbon isotopic analytical methods have been developed from analysis for whole oil and oil fractions (e.g., saturated, aromatic and polar frac-tions) into compound-specific isotopic analysis with the emergence of the newly developed GC-C-IRMS analytical technique. Especially, by using com-pound-specific isotopic analytical…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号