首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pokhrel  Pranisha  Zhou  Yangxiao  Smits  Frank  Kamps  Pierre  Olsthoorn  Theo 《Hydrogeology Journal》2023,31(5):1291-1309

Managed aquifer recharge (MAR) is increasingly used to secure drinking water supply worldwide. The city of Amsterdam (The Netherlands) depends largely on the MAR in coastal dunes for water supply. A new MAR scheme is proposed for the production of 10 × 106 m3/year, as required in the next decade. The designed MAR system consists of 10 infiltration ponds in an artificially created sandbank, and 25 recovery wells placed beneath the ponds in a productive aquifer. Several criteria were met for the design, such as a minimum residence time of 60 days and maximum drawdown of 5 cm. Steady-state and transient flow models were calibrated. The flow model computed the infiltration capacity of the ponds and drawdowns caused by the MAR. A hypothetical tracer transport model was used to compute the travel times from the ponds to the wells and recovery efficiency of the wells. The results demonstrated that 98% of the infiltrated water was captured by the recovery wells which accounted for 65.3% of the total abstraction. Other sources include recharge from precipitation (6.7%), leakages from surface water (13.1%), and natural groundwater reserve (14.9%). Sensitivity analysis indicated that the pond conductance and hydraulic conductivity of the sand aquifer in between the ponds and wells are important for the infiltration capacity. The temperature simulation showed that the recovered water in the wells has a stable temperature of 9.8–12.5 °C which is beneficial for post-treatment processes. The numerical modelling approach is useful and helps to gain insights for implementation of the MAR.

  相似文献   

2.
Percolation ponds have become very popular methods of managed aquifer recharge due to their low cost, ease of construction and the participation and assistance of community. The objective of this study is to assess the feasibility of a percolation pond in a saline aquifer, north of Chennai, Tamil Nadu, India, to improve the storage and quality of groundwater. Electrical resistivity and ground penetrating radar methods were used to understand the subsurface conditions of the area. From these investigations, a suitable location was chosen and a percolation pond was constructed. The quality and quantity of groundwater of the nearby area has improved due to the recharge from the pond. This study indicated that a simple excavation without providing support for the slope and paving of the bunds helped to improve the groundwater quality. This method can be easily adoptable by farmers who can have a small pond within their farm to collect and store the rainwater. The cost of water recharged from this pond works out to be about 0.225 Re/l. Cleaning the pond by scrapping the accumulated sediments needs to be done once a year. Due to the small dimension and high saline groundwater, considerable improvement in quality at greater depths could not be achieved. However, ponds of larger size with recharge shafts can directly recharge the aquifer and help to improve the quality of water at greater depths.  相似文献   

3.
Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California’s San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water.  相似文献   

4.
This paper, firstly, shows the distribution of arsenic-contaminated groundwater in Samta village. This village, which is in Jessore district in Bangladesh, was chosen as a model village for investigating the mechanism of groundwater contamination. 90% of the tube wells in this village had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tube wells with arsenic concentrations of over 0.50 mg/l were distributed in the southern part of the village with a belt-like shape from east to west. Secondly, groundwater distribution is discussed with respect to its flow and the high arsenic zone (As≥0.50 mg/l) agrees well with the drifting zone of the groundwater. Furthermore, arsenic-free water supply systems suitable for a small area in the village have been developed. A pond sand filter (PSF) system which purifies pond water is discussed in this paper. Prior to the construction of the PSF, the water quality in ponds was examined for arsenic levels. The inflow of drainage from the tube wells was found to be the major cause of arsenic contamination of pond water. The PSF installed in Samta is working very well and produces a good quality of treated water.  相似文献   

5.
Azraq Oasis in the eastern Jordanian desert is an important freshwater resource of the country. Shallow groundwater reserves are heavily exploited since the 1980s and in consequence the groundwater table dropped significantly. Furthermore, some wells of the major well field drilled into the shallow aquifer show an increasing mineralization over the past 20 years. A previous study using conventional tracers did not result in a satisfactory explanation, from where the salt originates and why only a few wells are affected. In this study, the application of dissolved noble gases in combination with other tracer methods reveals a complex mixing pattern leading to the very localized salinization within the well field. It is found that primarily the wells affected by salinization 1) contain distinctly more radiogenic 4He than the other wells, indicating higher groundwater age, and 2) exhibit 3He/4He ratios that argue for an imprint of deep fluids from the Earth's mantle.However, the saline middle aquifer below is virtually free of mantle helium, which infers an upstream from an even deeper source through a nearby conductive fault. The local restriction of the salinization process is explained by the wide range of permeabilities of the involved geologic units. As the wells abstract water from the whole depth profile, they initially pump water mainly from the well conductive top rock layer. As the groundwater table dropped, this layer fell progressively dry and, depending on the local conductivity profile, some wells began to incorporate more water from the deeper part of the shallow aquifer into the discharge. These are the wells affected by salinization, because according to the presented scheme the deep part of the shallow aquifer is enriched in both salt and mantle fluids.  相似文献   

6.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

7.
Managed artificial recharge (MAR) is a well-established practice for augmentation of depleted groundwater resources or for environmental benefit. At the St-André MAR site in the Belgian dune area, groundwater resources are optimised through re-use of highly treated wastewater by means of infiltration ponds. The very high quality of the infiltration water sets this system apart from other MAR systems. The low total dissolved solid (TDS) content in the infiltration water (less than 50 mg/L) compared to the dune aquifer (500 mg/L) triggers a number of reactions, increasing the TDS through soil-aquifer passage. Multi-component reactive transport modelling was applied to analyse the geochemical processes that occur. Carbonate dissolution is the main process increasing the TDS of the infiltration water. Oxic aquifer conditions prevail between the infiltration ponds and the extraction wells. This is driven by the high flow velocities, leaving no time to consume O2 between the ponds and extraction wells. Cation exchange is important when infiltration water is replaced by native dune water or when significant changes in infiltration-water quality occur. The seasonal variation of O2 and temperature in the infiltration water are the main drivers for seasonal changes in the concentration of all major ions.  相似文献   

8.
Drilling information, historical water table levels, groundwater salinity records of the existing water wells in Wadi Al Bih area, United Arab Emirates, were stored in a geodatabase and used to characterize the geological and hydrogeological settings of this area. A 2D earth resistivity imaging survey was conducted for the first time in the Northern UAE to determine the potential of the Quaternary aquifer and its groundwater quality in the areas where there are no monitoring wells. The results of the chemical analyses of the collected groundwater samples together with the inversion results of the resistivity data were used to draw a total salinity map and determine the spatial variations in groundwater quality. The inversion results of the 2D earth resistivity imaging data indicated that the Quaternary aquifer in the study area is in a good connection with the underlying carbonate aquifer. It also indicated that the carbonate aquifer is of major regional and vertical extension and it contains the fresh water in this area. The data stored in the developed database were used to produce different types of geopotential maps.  相似文献   

9.
赵连彬  吴勇 《地下水》2010,32(4):10-12
李家峪灰场由于灰场灰水的渗漏致使储灰场周围出现地下水位上升,水质变差等一系列环境地质问题。从水文地质条件角度分析灰场堆灰形成新的地下水分水岭致使灰水在2^#副坝坝前垂直下渗进入风化带,沿白云岩裂隙(溶隙)补给潜水含水层,并向韩家哨村区域流动补给孔隙含水层,改变后的潜水部分通过民井向外排泄。本次研究运用地下水数值模拟软件对研究区的地下水位进行动态模拟和预测,为该地区地下水污染评价提供参考。  相似文献   

10.
地下水地源热泵系统应用对地温场的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过建立地下水地源热泵系统试验场,运行热泵系统,并进行地下水温度连续监测,分析应用地下水地源热泵系统对地温场的影响。抽水井与回灌井之间以及回灌井附近的地下水温度随系统运行明显变化。系统运行后,回灌水体将以不规则边缘的透镜体贮存于含水层中,以回灌井为中心向外围扩展,水温最低或最高点位于含水层中部。粘性土相对隔水层的温度变化幅度、影响范围均小于含水层。由于热量的累积效应,即使是冷热负荷均衡的热泵系统,运行一个采暖、制冷周期后也将在热源井附近的抽、灌水含水层以及相邻的隔水层中形成冷量或热量的小范围聚积。  相似文献   

11.
国家大剧院深基坑地下水控制设计及施工技术   总被引:3,自引:0,他引:3  
国家大剧院基坑地下水控制是大剧院工程的三大难题之一,也是专家们讨论的焦点。经过水文地质试验和充分论证,确定了地下水控制方案和施工方法,即采用反循环成井工艺施工引渗井,将上层滞水和潜水引渗到第一层承压含水层中消纳,保证第一步基坑开挖至-15 7m;在-15 7m位置采用连续墙阻隔第一层承压水,并使用旋挖钻机在槽内施工降水井,疏干槽内承压含水层并进行越流补给控制,保证基坑开挖至-26m;在歌剧院台仓局部加深部份(-32 5m),采用封闭布设减压井,解决基坑开挖和台仓地下结构施工时基坑突涌的问题;最后采用特殊的封井技术,将井管内高于槽底约10m的承压水头封堵在槽底以下0 5m,安全截断井管,保证了基础施工。  相似文献   

12.
《Applied Geochemistry》2003,18(7):1043-1063
The Memphis aquifer in southwestern Tennessee is confined to a semi-confined unconsolidated sand aquifer and is the primary municipal water source in the Memphis metropolitan area. Past studies have identified regions in the metropolitan area in which the overlying upper Claiborne confining unit lacks significant clay and provides a hydraulic connection between the shallow aquifer and the Memphis aquifer. In this study, major solute chemistry, 3H, and 3H/3He groundwater dating are used to investigate the extent and chemical effects of leakage through the confining unit to the Memphis aquifer in the vicinity of a municipal well field. The 3H/3He dates and geochemical modeling of the chemical data are used to constrain mixing fractions and the timing of modern recharge. Tritium activities of as much as 2.8 TU are observed in shallow production wells, but deeper production wells have 3H activities that approach the detection limit. Trends in water chemistry indicate vertical mixing in the aquifer of shallow Na–SO4–Cl-rich water and deeper Ca–Mg–HCO3-rich water. Water chemistry does not vary consistently with seasonal pumping, but 3H activity generally decreases during low use periods. Stable O and H isotopes show little variation and are not useful groundwater tracers for this study. The 3H-bearing, Na–SO4–Cl-rich water is interpreted to reflect recharge of modern water through the upper Claiborne confining unit. The 3H/3He dates from 5 production wells indicate modern recharge, that infiltrated 15–20 a ago, is present in the shallow production wells. Geologic data and hydrologic boundary conditions suggest that the most likely source for continued leakage is a nearby stream, Nonconnah Creek. Geochemical reaction modeling using the NETPATH computer code suggests that proportions of shallow aquifer water leaking into the Memphis aquifer range from 6 to 32%. The 3H/3He dating and NETPATH modeling results correlate well, suggesting that these complementary analytical tools provide an effective means to evaluate proportions of modern water leaking into semi-confined aquifers. These results also indicate a need to carefully consider connections between surface water and semi-confined groundwater resources in wellhead protection programs.  相似文献   

13.
Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada “single-well method” (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).  相似文献   

14.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

15.
Significant upward movement of mineralized water takes place in the Puebla aquifer system. Preferential groundwater flow paths related to the geological structure and the lowering of the potentiometric surface are suspected to be the prime factors for this intrusion. A combined approach of geochemical and isotope analyses was used to assess the sources of salinity and processes that are controlling the changes in groundwater chemical composition in the Puebla aquifer. Geochemical and isotope data indicate that the likely source of increased solutes is mineralized water from the dissolution of evaporites of the Cretaceous age at the base of the Upper deep aquifer, which is deeper than the intakes of the shallow wells. Dedolomitization and cation exchange seems also to occur along flow paths where sulphate concentrations tend to increase. The deep regional flow paths controls the chemical stratification of groundwater in response to decreased heads through interconnecting vertical and horizontal pathways, such as in the Fosa Atlixco. The results also suggest that high sulphate concentrations originating in the Lower deep aquifer are currently affecting shallow production wells. It is concluded that hydrodynamic aspects together with hydrogeochemical characteristics need to be taken into account to correctly explain the hydrochemical evolution in the stratified aquifer.  相似文献   

16.
Management of groundwater resources can be improved by using groundwater models to perform risk analyses and to improve development strategies, but a lack of extensive basic data often limits the implementation of sophisticated models. Dar es Salaam in Tanzania is an example of a city where increasing groundwater use in a Pleistocene aquifer is causing groundwater-related problems such as saline intrusion along the coastline, lowering of water-table levels, and contamination of pumping wells. The lack of a water-level monitoring network introduces a problem for basic data collection and model calibration and validation. As a replacement, local water-supply wells were used for measuring groundwater depth, and well-top heights were estimated from a regional digital elevation model to recalculate water depths to hydraulic heads. These were used to draw a regional piezometric map. Hydraulic parameters were estimated from short-time pumping tests in the local wells, but variation in hydraulic conductivity was attributed to uncertainty in well characteristics (information often unavailable) and not to aquifer heterogeneity. A MODFLOW model was calibrated with a homogeneous hydraulic conductivity field and a sensitivity analysis between the conductivity and aquifer recharge showed that average annual recharge will likely be in the range 80–100 mm/year.  相似文献   

17.
The present study assesses the impact of the ash ponds on the groundwater quality in the sub-watershed surrounding the ash ponds in the vicinity of Koradi near Nagpur in Maharashtra, India. Observation wells have been set up for monitoring of water level and groundwater quality for major cations, anions and trace elements. Samples (23 nos.) have been collected in pre-monsoon and post-monsoon seasons during 2008 and 2009, and analysis indicates that the sulphate concentration is very high (>1,000 mg/L) in samples close to the ash pond and in its downstream direction. The fluoride concentration exceeds the BIS limits in one sample.  相似文献   

18.

The Biscayne Aquifer (Florida, USA) is a coastal, shallow, unconfined, and heterogeneous aquifer with high water tables, composed of less-permeable sand to highly permeable karstic limestone. These properties make the Biscayne Aquifer one of the world’s most productive groundwater resources. The aquifer’s high yield and non-Darcian flow cause challenges for estimating aquifer parameters, which are essential for understanding groundwater processes and managing and protecting the groundwater resources. Water-table fluctuations in the Biscayne Aquifer are associated with astronomical tidal forces and gate operations on canal water-control structures. Analysis of observed groundwater level fluctuations can provide an understanding of the connectivity between the aquifer, Biscayne Bay, and the water level in the canals. Further, groundwater level fluctuations can be used for aquifer parameter estimation. In this research, observed ocean water levels measured at tidal stations and groundwater levels are fitted to Jacob’s analytical solution, where the amplitude of the groundwater head fluctuation decreases exponentially, and the time lag increases with distance from the shore. Observed groundwater levels were obtained from monitoring wells along the Miami-Dade shore and the barrier island of Miami Beach. Results indicate that Jacob’s solution is effective for aquifer parameter estimation in Miami Beach, where monitoring wells are closer to the shore. Estimated hydraulic conductivity appears to increase by four orders of magnitude to approximately 1 m s–1 as the distance from shore increases. Constructing monitoring wells closer to the shore in Miami-Dade County and elsewhere would permit improved aquifer parameter estimation and support enhanced groundwater modeling efforts.

  相似文献   

19.
The present study assesses groundwater resources in the semiarid central Sudan, where 20 deep productive wells were installed to supply a major city in the region, El Obeid. The wells, which has an average 20 L/s discharge each, are taping a deep semiconfined to confined aquifer of fluvial silisiclastics deposited in the Tertiary–Pleistocene. Groundwater modeling was used as a technique to interpret the hydrologic system in arid to semiarid central Sudan and to simulate the future influence of the project on the hydrogeologic system. The simulation confirmed that steady-state flow conditions have been currently reached as indicated by consistency of computed heads. It also calibrated the values of the conductivity and recharge and ensured the sustainability of the El Obeid water supply project. A total of 3.5 × 107 m3/year can be continually extracted from the deep aquifer to supply El Obeid city without endangering the groundwater resources in the region. The decline in water level will not exceed 25 m during the first 10 years, while indefinite continuous pumping will affect only the vicinity of the wells in a circle of 30 km diameter. Therefore, aquifer storage capacity and hydraulic properties encourage further groundwater exploitation. The present use of groundwater is extremely lower than the present demand, and it can potentially cover future demands without introducing significant changes to the system. The increase of pumping cost due to the decline in head subsequent to project operation was found to be minimal and of local effect.  相似文献   

20.
Since July 2002, tertiary treated wastewater has been artificially recharged through two infiltration ponds in the dunes of the Belgian western coastal plain. This has formed a lens of artificially recharged water in the dunes’ fresh water lens. Recharged water is recovered by extraction wells located around the ponds. Hydraulic aspects of the artificial recharge and extraction are described using field observations such as geophysical borehole loggings and a tracer test. Borehole logs indicate recharged water up to 20 m below surface, whereas the tracer test gives field data about the residence times of the recharged water. Furthermore, a detailed solute transport model was made of the area surrounding the ponds. Groundwater flow, capture zone, residence times and volume of recharged water in the aquifer are calculated. This shows that the residence time varies between 30 days and 5 years due to the complex flow pattern. The extracted water is a mix of waters with different residence times and natural groundwater, assuring a relatively stable water quality of the extracted water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号