首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetatedSpartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic Coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4–4.5 yr record with the long-term (>50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, theSpartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrowsAmmodramus maritimus, saltmarsh sharp-tailed sparrowsAmmodramus caudacutus, black railsLaterallus jamaicensis, clapper railsRallus longirostris. Forster's ternsSterna forsteri, common ternsSterna hirundo, and gull-billed ternsSterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.  相似文献   

2.
Little is known about the importance of salmarshes to juvenile and adult fishes in temperate Australia. We assessed diel and feeding patterns of fish inhabiting saltmarsh in a sheltered embayment along the coast of Victoria, Australia, between October 2002 and May 2003. The saltmarsh flat was generally only inundated during low-pressure weather systems (barometric pressure <1,013 hP). Fish were sampled over the saltmarsh flats using fyke and seine nets. A total of 2,047 individuals (10 species, including juveniles and adults) were caught.Atherinasoma microstoma was most abundant (fyke [F], μ=1.6 fish h−1; seine [S], μ=28.2 fish shot−1), followed byFavonigobius, lateralis (F: 0.5; S: 0.6),Galaxias maculatus (F: 0.1),Heteroclinus adelaide (F:<0.1),Kestratherina esox (F: <0.1; S: 1.6),Leptatherina presbyteroides (F: <0.1; S: 7.1) andTetractenos glaber (F: 1). Commercial species, includingAldrichetta forsteri (F: <0.1; S: 3.2),Sillaginodes punctata (F: <0.1; S: 0.9), andRhombosolea tapirina (F: 0.4), were commonly sampled. Variability in species richness or fish abundance was not explained by water temperature, salinity, depth, or barometric pressure. Significantly more species were sampled with the seine during nocturnal periods (p=0.002); fish abundance did not vary between diel periods, nor did fish abundance and species richness in fyke net samples. Diets of the most abundant species (A. microstoma, A. forsteri, andF. lateralis) were primarily composed of gammaridean amphipods and hemipteran insects. There was no correlation between fish diets and the composition of benthic invertebrates as sampled at 3 different regions of the saltmarsh flat. The saltmarsh flats in our study region are inhabited by several species normally associated with alternative habitat types such as seagrass, and the patterns of habitat use observed appear to be partially attributed to foraging behavior.  相似文献   

3.
We examined the effect of whole-ecosystem nutrient enrichment on herbivory in saltmarsh creek-wall habitats in the Plum Island Estuary (Massachusetts, USA). Located between the macrophyte-dominated high marsh and adjoining mudflats, creek walls are steep vertical habitats vegetated with productive filamentous algae and associated epiphytes. Annual nitrate and phosphate loading rates were increased approximately ×10–15 in creeks mimicking short-term (2-month) and chronic (6-year) eutrophication. We assessed the diets of epifaunal invertebrates (three gastropods and one amphipod species) that potentially graze on benthic algae using natural isotope abundance data and per capita grazing rate measurements derived from 13C prelabeled algae. Substantial dietary contributions from benthic algae were observed in all consumers even though previous research has indicated most rely on Spartina detritus as the principal food resource. The amphipod Orchestia grillus and the snail Melampus bidentatus grazed benthic algae in excess of 500 μg algal C g C?1 h?1, whereas the snail Nassarius obsoletus and hydrobiid snails grazed at lower rates. Few dietary changes were detected with short-term enrichment. Algal grazing rates of N. obsoletus and M. bidentatus increased with chronic enrichment probably as a functional response to increased algal productivity. O. grillus grazed at a high rate and parasitic infection did not affect its consumption of benthic algae. The abundance and frequency of occurrence of O. grillus on creek-wall habitats increased with chronic nutrient enrichment suggesting amphipods contribute to top–down control on benthic algae and slow algal growth as nutrient enrichment occurs.  相似文献   

4.
Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coastal systems faced with deteriorating habitat, accelerated sea level rise, and changes in precipitation and storm patterns.  相似文献   

5.
Many studies compare utilization of different marine habitats by fish and decapod crustaceans; few compare multiple vegetated habitats, especially using the same sampling equipment. Fish and invertebrates in seagrass, mangrove, saltmarsh, and nonvegetated habitats were sampled during May–August (Austral winter) and December–January (Austral summer) in the Barker Inlet-Port River estuary, South Australia. Sampling was undertaken using pop nets in all habitats and seine nets in seagrass and nonvegetated areas. A total of 7,895 fish and invertebrates spanning 3 classes, 9 orders, and at least 23 families were collected. Only one fish species,Atherinosoma microstoma, was collected in all 4 habitats, 11 species were found in 3 habitats (mangroves, seagrass, and nonvegetated), and 13 species were only caught in seagrass and nonvegetated habitats. Seagrass generally supported the highest numbers of fish and invertebrates and had the greatest species richness. Saltmarsh was at the other extreme with 29 individuals caught from two species. Mangroves and nonvegetated habitats generally had more fish, invertebrates, and species than saltmarsh, but less than seagrass. Analyses of abundances of individual species generally showed an interaction between habitat and month indicating that the same patterns were not found through time in all habitats. All habitats supported distinct assemlages although seagrass and nonvegetated assemblages were similar in some months. The generality of these patterns requires further investigation at other estuaries. Loss of vegetated habitats, particularly seagrass, could result in loss of species richness and abundance, especially for organisms that were not found in other habitats. Although low abundances were found in saltmarsh and mangroves, species may use these habitats for varying reasons, such as spawning, and such use should not be ignored.  相似文献   

6.
We examined ontogenetic, interspecific, and seasonal trophic patterns among sympatric sunfish species, redspotted sunfish,Lepomis miniatus; redear sunfish,Lepomis microlophus; and bluegill,Lepomis macrochirus, in an estuarine bayou. In particular we studied these feeding patterns in relation to relative abundances of prey from different benthic feeding habitats. All three sunfishes showed ontogenetic divergence in their trophic niches, reflecting different ecomorphological specializations. Small fishes depended on zooplankton, whereas larger fishes of all three species shifted their diets to benthic macrofauna. A potential for trophic resource partitioning was reflected by dietary differences among the three sunfish species. One impalied mechanism for resource partitioning was feeding habitat, as redear sunfish frequently used sediment-associated prey, while bluegill showed greater use of water-column-associated prey, and redspotted sunfish often used SAV-associated prey. However, all three sunfishes apparently used each feeding habitat to some degree; and, trophic differences were more clearly based on prey type than on feeding habitat. Redear sunfish, which can crush hard-shelled prey, exhibited the most distinctive diet. An apparent seasonal shift in feeding habitat occurred in autumn/winter, as indicated by increased overlap between diets and SAV. This shift was facilitated by changes in the relative abundances of several common prey types between benthic habitats. The relative abuandance and use of freshwater and estuarine-derived prey also varied seasonally, suggesting a possible trophic benefit of consistent prey availability in the estuarine bayou.  相似文献   

7.
A 16-yr (1985–2000) time series of calanoid copepod (Acartia tonsa andEurytemora affinis) abundance in the upper Chesapeake Bay was examined for links to winter weather variability. A synthesis of sea level pressure data revealed ten dominant, winter weather patterns. Weather patterns differed in frequency of occurrence as well as associated precipitation and temperature. The two dominant copepod species responded differently to winter weather variability.A. tonsa abundance showed little response to winter weather and did not vary in abundance during wet or dry springs.E affinis responded strongly to winter weather patterns that produced springs with high freshwater discharge and low salinities. During wet springs,E. affinis abundance increased overall and its area of dominance extended further down estuary. The different response of the two species is likely related to several factors including residence time, development time, salinity tolerance, food limitation, and life history strategy. Important fish species that rely on zo oplankton as food resources were also related to winter weather variability and spring zooplankton abundance.Morone saxatilis (striped bass) andAnchoa mitchilli (bay anchovy) juvenile indices were positively and negatively correlated toE. affinis abundance, respectively. *** DIRECT SUPPORT *** A02BY003 00004  相似文献   

8.
Conservationists need to know the degree of habitat fidelity for species of conservation concern. Stable Isotope Analysis in R quantified the contribution of terrestrial vs. saltmarsh primary production sources to terrestrial passerine food webs from four habitats of Sapelo Island, Georgia (USA), saltmarsh, maritime scrub–shrub, maritime broadleaf (oak), and maritime narrowleaf (pine) forests, using δ 13C and δ 15N. Models suggested Northern Parula (Parula americana) in oak forests, White-eyed Vireos (Vireo griseus) in shrub, and Brown-headed Nuthatches (Sitta pusilla) in pine forests derived most of their food from habitats they occupied (53–100%). Saltmarsh provided 47–94% of Painted Bunting (Passerina ciris) food sources, supporting previous findings by Springborn and Meyers (2005). Thus, Painted Bunting conservation in the Southeastern USA should focus on Springborn and Meyers’ suggestion of maritime scrub–shrub habitat and forests with <75% canopy, >50% ground cover, and patches of shrubs that are within 700 m of saltmarsh.  相似文献   

9.
Complex links between the top-down and bottom-up forces that structure communities can be disrupted by anthropogenic alterations of natural habitats. We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.  相似文献   

10.
During the late Pleistocene and early Holocene, Bison was widely dispersed across North America and occupied most regions not covered by ice sheets. A dietary study on Bison paleopopulations from Alaska, New Mexico, Florida, and Texas was performed using two methods that relate dental wear patterns to diet, mesowear analysis and microwear analysis. These data were compared to a mixed sample of extant Bison from the North American central plains, extant wood Bison from Alberta (Canada) and a variety of other modern ungulates. Mesowear relates macroscopic molar facet shape to levels of dietary abrasion. The mesowear signature observed on fossil Bison differs significantly from the hyper-abrasive grazing diet of extant Bison. Tooth microwear examines wear on the surface of enamel at a microscopic scale. The microwear signal of fossil samples resembles to modern Bison, but the fossil samples show a greater diversity of features, suggesting that fossil Bison populations regularly consumed food items that are texturally inconsistent with the short-grass diet typical of modern plains Bison. Mesowear and microwear signals of fossil Bison samples most closely resemble a variety of typical mixed feeding ungulates, all with diets that are substantially less abrasive than what is typical for modern plains Bison. Furthermore, statistical tests suggest significant differences between the microwear signatures of the fossil samples, thus revealing geographic variability in Pleistocene Bison diets. This study reveals that fossils are of value in developing an understanding of the dietary breadth and ecological versatility of species that, in recent times, are rare, endangered, and occupy only a small remnant of their former ranges.  相似文献   

11.
Benthic resource utilization by, red drum (Sciaenops ocellatus) and spotted seatrout (Cynoscion nebulosus) was studied in a restored, mangrove-rimmed impoundment (Cabbagehead Bayou) of Upper Tampa Bay, Florida, and in a nearby, natural site of unaltered tidal regime (Double Branch Bay). Diets of fish captured from August 1990 to May 1992 were determined from stomach content analysis. Simultaneously, food availability was evaluated by sampling benthic macroinvertebrates, mobile decapods, and small fish. Red drum and spotted seatrout utilized the restored habitat 1 yr after it was opened to tidal influence. Both species also were collected in the natural mangrove. Although there were noted differences in benthic assemblages between the two sites, red drum and spotted seatrout exhibited flexibility in diet, feeding on abundant and accessible prey. The high abundance of microcrustacea, such as amphipods, on detritus accumulated in the restored habitat constituted a main food resource for both fish species. Major food items in the diet of small (<200 mm) red drum were amphipods, mysids, and nereid and arenicolid polychaetes. Large (200–590 mm) red drum fed on polychaetes, xanthid crabs, palaemonid shrimp, and small fishes. Spotted seatrout preyed primarily upon mysids, shrimp, and small fishes, and to a lesser extent, upon a nereid polychaete. Our findings on fish feeding in a restored mangrove impoundment indicated that the detrital-associated benthic community is utilized by reinvading fish within a short time period, suggesting that not only habitat but food resources were augmented by the reopening of this wetland.  相似文献   

12.
A relative sea-level history is reconstructed for Machiasport, Maine, spanning the past 6000 calendar years and combining two different methods. The first method establishes the long-term (103 yr) trend of sea-level rise by dating the base of the Holocene saltmarsh peat overlying a Pleistocene substrate. The second method uses detailed analyses of the foraminiferal stratigraphy of two saltmarsh peat cores to quantify fluctuations superimposed on the long-term trend. The indicative meaning of the peat (the height at which the peat was deposited relative to mean tide level) is calculated by a transfer function based on vertical distributions of modern foraminiferal assemblages. The chronology is determined from AMS 14C dates on saltmarsh plant fragments embedded in the peat. The combination of the two different approaches produces a high-resolution, replicable sea-level record, which takes into account the autocompaction of the peat sequence. Long-term mean rates of sea-level rise, corrected for changes in tidal range, are 0.75 mm/yr between 6000 and 1500 cal yr B.P. and 0.43 mm/yr during the past 1500 years. The foraminiferal stratigraphy reveals several low-amplitude fluctuations during a relatively stable period between 1100 and 400 cal yr B.P., and a sea-level rise of 0.5 m during the past 300 years.  相似文献   

13.
In a continuing effort to monitor the fish response to marsh restoration (resumed tidal flow, creation of creeks), we compared qualitative and quantitative data on species richness, abundance, assemblage structure and growth between pre-restoration and post-restoration conditions at two former salt hay farms relative to a reference marsh in the mesohaline portion of Delaware Bay. The most extensive comparison, during April–November 1998, sampled fish populations in large marsh creeks with otter trawls and in small marsh creeks with weirs. Species richness and abundance increased dramatically after restoration. Subsequent comparisons indicated that fish size, assemblage structure, and growth of one of the dominant species,Micropogonias undulatus, was similar between reference and restored marshes 1 and 2 yr post-restoration. Total fish abundance and abundance of the dominant species was greater, often by an order of magnitude, in one of the older restored sites (2 yr post-restoration), while the other restored site (1 yr post-restoration) had values similar to the reference marsh. The success of the restoration at the time of this study suggests that return of the tidal flow and increased marsh area and edge in intertidal and subtidal creeks relative to the former salt hay farms contributed to the quick response of resident and transient young-of-the-year fishes.  相似文献   

14.
The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition.The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ15N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ15N values. The variability of the relationship between the δ15N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in 15N relative to the diet, with the difference between the δ15N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ15N values ofcollagen and chitin. biochemical components that are often preserved in fossil animal remains, are also related to the δ15N value of the diet.The dependence of the δ15N values of whole animals and their tissues and biochemical components on the δ15N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ15N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources.The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ15C and δ15N values of bone collagen suggest that C4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.  相似文献   

15.
Holocene pollen and diatom analyses and complementary data from δ18O and δ13C, malacology and sedimentology have provided a detailed record of vegetation history and palaeoenvironmental change at arroyo Las Brusquitas, on the southeastern coast of the pampas of Argentina especially in relation to past sea levels. Holocene palaeosalinity trends were estimated by Detrended Correspondence Analysis and by salinity indexes based on pollen and diatom data. As a consequence of sea‐level rise from the postglacial an extensive wave‐cut platform formed over which Holocene infilling sequences were deposited unconformably. In these sequences, variation in pollen and diatom assemblages occurred in agreement with changes in mollusc diversity and abundance, isotope values, and sediment deposits. Between ca. 6700 and 6190 14C yr BP (6279–6998 cal. yr BP) saline conditions predominated in an environment highly influenced by tides and salt water during the Holocene sea‐level highstand. Between ca. 6200 and 3900 14C yr BP (4235–4608 cal. yr BP) shallow brackish water bodies formed surrounded by saltmarsh vegetation that became more widespread from 5180 14C yr BP (5830–6173 cal. yr BP) to 3900 14C yr BP in relation to a sea‐level stabilisation period within the regression phase. Less saline conditions marked by frequent variations in salinity predominated between ca. 3900 and 2040 yr 14C BP (1830–2160 cal. yr BP). The intertidal saltmarsh environment changed into a brackish marsh dominated by freshwater conditions and sporadic tidal influence. Halophytic vegetation increased towards ca. 200014C yr BP indicating that saline conditions may be due to either desiccation or an unusually high tide range with rare frequency. After ca. 2000 14C yr BP the sedimentary sequences were buried by aeolian sand dunes. Changes in Holocene vegetation and environments in Las Brusquitas area are in agreement with data obtained from various southeastern coastal sites of the Pampa grasslands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Spatio-temporal variability in the length-weight relationship of four sympatric shrimp species (Farfantepeneus aztecus, F. brasiliensis, F. duorarum, andF. notialis) was evaluated in the Celestun lagoon, Mexico. Monthly samples were taken throughout 2 yr in three hydrological zones (seaward, middle, and inner) and climatic seasons (Nortes, Dry, and Rainy). Significant intraspecific and interspecific differences in the length-weight relationships were detected among climatic seasons and hydrological zones, reflecting positive allometric growth.F. notialis registered the highest condition (weight at length), followed byF. duorarum, F. aztecus, andF. brasiliensis. The lowest values in condition were consistently registered during Nortes and at the seaward zone. All species showed a pattern consistent with a density-dependent effect on condition, that is a negative correlation between individual mean weight and total relative abundance. The immediate implication for managing this important multispecific coastal artisanal resource that is supported by our study is the restriction of fishing effort in the seaward zone, mainly during the Nortes seasons.  相似文献   

18.
Analysis of pollen, spores, macrofossils, and lithology of an AMS 14C-dated core from a subarctic fen on the Kenai Peninsula, Alaska reveals changes in vegetation and climate beginning 14,200 cal yr BP. Betula expansion and contraction of herb tundra vegetation characterize the Younger Dryas on the Kenai, suggesting increased winter snowfall concurrent with cool, sunny summers. Remarkable Polypodiaceae (fern) abundance between 11,500 and 8500 cal yr BP implies a significant change in climate. Enhanced peat preservation and the occurrence of wet meadow species suggest high moisture from 11,500 to 10,700 cal yr BP, in contrast to drier conditions in southeastern Alaska; this pattern may indicate an intensification and repositioning of the Aleutian Low (AL). Drier conditions on the Kenai Peninsula from 10,700 to 8500 cal yr BP may signify a weaker AL, but elevated fern abundance may have been sustained by high seasonality with substantial snowfall and enhanced glacial melt. Decreased insolation-induced seasonality resulted in climatic cooling after 8500 cal yr BP, with increased humidity from 8000 to 5000 cal yr BP. A dry interval punctuated by volcanic activity occurred between 5000 and 3500 cal yr BP, followed by cool, moist climate, coincident with Neoglaciation. Tsuga mertensiana expanded after ~ 1500 cal yr BP in response to the shift to cooler conditions.  相似文献   

19.
Pollen evidence from Lake Shayema, Mianning County, was obtained to examine postglacial vegetation and climatic change in southwestern Sichuan, China. The sclerophyllous character of the region's warm temperate vegetation today is a reflection of extreme drought in spring before the onset of the Asian monsoons. The pollen record displays several changes in the vegetation over the last 11,000 yr. From 11,000 to 9100 yr B.P., cold-tolerant species, such as Abies , Betula, and deciduous oaks, dominated the vegetation. Between 9100 and 7800 yr B.P., the abundance of deciduous oaks decreased and evergreen oaks increased, as did Tsuga and mesic deciduous species. This change suggests a warming climate with increased precipitation. From 7800 to 4000 yr B.P., sclerophyllous species increased at the expense of mesic deciduous species, an indication that precipitation was becoming more seasonal. Except for increased disturbance starting ca. 1000 yr B.P., the predominance of sclerophyllous vegetation continued until today. The pollen results are compatible with proposed global circulation hypotheses of a strengthened monsoon system during the early to mid Holocene.  相似文献   

20.
Juvenile and adult winter flounder,Pseudopleuronectes americanus Walbaum (Pleuronectidae), from the Navesink River and Sandy Hook Bay, New Jersey, U.S., were examined for ontogenetic, seasonal, and spatial variation in dietary content. Fish (n=1291 non-empty) were placed by cluster analysis of dietary content into three size groups: 15–49, 50–299, and ≥300 mm total length. Clear ontogenetic patterns were revealed, in particular the disappearance of calanoid copepods from the diet as fish grew >50 mm and an increase in number of taxa in the diet with growth. Fish in size group 1 fed upon spionid polychaetes, the calanoid copepodEurytemora affinis, and ampeliscid amphipods. Fish in size group 2 added various species of polychaetes, amphipods, and siphons of the bivalveMya aremaria to their diets. Size group 2 was present during all months of the survey, but only minor seasonal differences in their diet were apparent. One obvious change was the increase in consumption of the shrimpCrangon septemspinosa in summer and fall. Size group 3 fish, collected mainly in fall, ate large volumes ofM. arenaria and glycerid polychaetes. Cluster analysis showed a largescale spatial pattern in diet among fish of size group 1, related to the presence ofE. affinis in winter flounder diets in the river and a marsh cove in the bay. Small-scale spatial differences in diets of fish in size group 2 were possibly related to prey distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号