首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The contribution of bathymetry to the estimation of gravity field related quantities is investigated in an extended test area in the Mediterranean Sea. The region is located southwest of the island of Crete, Greece, bounded between 33? ≤ ? ≤ 35? and 15? ≤ λ ≤ 25?. Gravity anomalies from the KMS99 gravity field and shipborne depth soundings are used with a priori statistical characteristics of depths in a least-squares collocation procedure to estimate a new bathymetry model. Two different global bathymetry models, namely JGP95E and Sandwell and Smith V8, are used to derive the depth a priori statistical information, while the estimated model is compared against both the global ones and the shipborne depth soundings to assess whether there is an improvement. Various marine geoid models are estimated using ERS1 and GEOSAT Geodetic Mission altimetry and shipborne gravity data. In that process, the effect of the bathymetry is computed using both the estimated and the original depths through a residual terrain modeling reduction. The TOPEX/Poseidon Sea Surface Heights, known for their high accuracy and precision, and the GEOMED solution for the geoid in the Mediterranean are used as control for the validation of the new geoid models and to assess the improvement that the estimated depths offer to geoid modeling. The results show that the newly estimated bathymetry agrees better (by about 30 to 300 m) with the shipborne depth soundings and provides smoother residual geoid heights and gravity anomalies (by about 8–20%) than those from global models. Finally, the achieved accuracy in geoid modeling ranges between 6 and 10 cm (1σ).  相似文献   

2.
The contribution of bathymetry to the estimation of gravity field related quantities is investigated in an extended test area in the Mediterranean Sea. The region is located southwest of the island of Crete, Greece, bounded between 33ˆ ≤ ϕ ≤ 35ˆ and 15ˆ ≤ λ ≤ 25ˆ. Gravity anomalies from the KMS99 gravity field and shipborne depth soundings are used with a priori statistical characteristics of depths in a least-squares collocation procedure to estimate a new bathymetry model. Two different global bathymetry models, namely JGP95E and Sandwell and Smith V8, are used to derive the depth a priori statistical information, while the estimated model is compared against both the global ones and the shipborne depth soundings to assess whether there is an improvement. Various marine geoid models are estimated using ERS1 and GEOSAT Geodetic Mission altimetry and shipborne gravity data. In that process, the effect of the bathymetry is computed using both the estimated and the original depths through a residual terrain modeling reduction. The TOPEX/Poseidon Sea Surface Heights, known for their high accuracy and precision, and the GEOMED solution for the geoid in the Mediterranean are used as control for the validation of the new geoid models and to assess the improvement that the estimated depths offer to geoid modeling. The results show that the newly estimated bathymetry agrees better (by about 30 to 300 m) with the shipborne depth soundings and provides smoother residual geoid heights and gravity anomalies (by about 8-20%) than those from global models. Finally, the achieved accuracy in geoid modeling ranges between 6 and 10 cm (1σ).  相似文献   

3.
海底地形是全球地形的重要组成部分,对地球物理科学研究、经济活动等具有重要作用。基于Parker公式,利用卫星测高重力异常和船测水深数据,采用频域的方法反演了疑似马航MH370失事区域的留尼汪海域的10°×10°的海底地形。最后将反演的水深和船测水深、国际通用的海深模型ETOPO1作比较进行精度评估,结果表明:本文反演结果与船测水深相比误差平均值为-26.038 m,标准差为176.588 m;与ETOPO1相比,差异平均值为-33.541 m,标准差为160.769 m。这表明采用重力异常数据,结合船测数据能较高精度地反演海底地形。  相似文献   

4.
A bathymetric model for the South China Sea is computed from altimeter-derived gravity anomalies, shipborne depths, ETOPO5, and the GMT shorelines using a procedure that includes downward continuation, linear regression, and data merging. The model best fits the GMT shorelines and is a compromise between smoothness, degree of agreement with ship data, and the seafloor features we wish to retain. The model is proven useful in studying the tectonics and modeling the ocean tide of the South China Sea.  相似文献   

5.
The determination of high-resolution geoid for marine regions requires the integration of gravity data provided by different sources, e.g. global geopotential models, satellite altimetry, and shipborne gravimetric observations. Shipborne gravity data, acquired over a long time, comprises the short-wavelengths gravitation signal. This paper aims to produce a consistent gravity field over the Red Sea region to be used for geoid modelling. Both, the leave-one-out cross-validation and Kriging prediction techniques were chosen to ensure that the observed shipborne gravity data are consistent as well as free of gross-errors. A confidence level equivalent to 95.4% was decided to filter the observed shipborne data, while the cross-validation algorithm was repeatedly applied until the standard deviation of the residuals between the observed and estimated values are less than 1.5 mGal, which led to the elimination of about 17.7% of the shipborne gravity dataset. A comparison between the shipborne gravity data with DTU13 and SSv23.1 satellite altimetry-derived gravity models is done and reported. The corresponding results revealed that altimetry models almost have identical data content when compared one another, where the DTU13 gave better results with a mean and standard deviation of ?2.40 and 8.71 mGal, respectively. A statistical comparison has been made between different global geopotential models (GGMs) and shipborne gravity data. The Spectral Enhancement Method was applied to overcome the existing spectral gap between the GGMs and shipborne gravity data. EGM2008 manifested the best results with differences characterised with a mean of 1.35 mGal and a standard deviation of 11.11 mGal. Finally, the least-squares collocation (LSC) was implemented to combine the shipborne gravity data with DTU13 in order to create a unique and consistent gravity field over the Red Sea with no data voids. The combined data were independently tested using a total number of 95 randomly chosen shipborne gravity stations. The comparison between the extracted shipborne gravity data and DTU13 altimetry anomalies before and after applying the LSC revealed that a significant improvement is procurable from the combined dataset, in which the mean and standard deviation of the differences dropped from ?3.60 and 9.31 mGal to ?0.39 and 2.04 mGal, respectively.  相似文献   

6.
The gravity-geologic method (GGM) was used to enhance the bathymetry of the East Sea (Sea of Japan) with satellite altimetry-derived free-air gravity anomalies and shipborne depth measurements. By comparison with the bathymetry model of Smith and Sandwell’s (SAS) approach (1994), GGM was found to have an advantage with short wavelength (≤12 km) components, while SAS better predicts longer wavelength (≥25 km) components, despite its dependency on density contrast. To mitigate this limitation, a tuning density contrast of 10.25 g/cm3 between seawater and the seafloor was primarily estimated by the downward continuation method and then validated by the check points method with GGM. Similarly, SAS is limited by the “A” value in low-pass part of the Wiener filter, which defines the effective range of the wavelength components on bathymetry. As a final result, we present an enhanced GGM bathymetry model by integrating all available data.  相似文献   

7.
The potential hydrothermal systems unexplored in the Southwest Indian Ocean   总被引:1,自引:0,他引:1  
Deep-sea hydrothermal vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, hydrothermal vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°–16°E Section B and 16°–25°E Section C) and three at the eastern end (49°–52°E Section D, 52°–61°E Section E and 61°–70°E Section F). Hydrothermal vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and hydrothermal vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°–47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no hydrothermal vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of hydrothermal systems along these two sections. An off-axial hydrothermal system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.  相似文献   

8.
Sea surface temperature (SST) isoline charts that were manually mapped using in situ SST data and satellite-derived SST data are valuable because they incorporate oceanographers’ knowledge and experience. This type of SST data is useful for studying sea conditions of an area, for analyzing environmental factors that could affect fishing grounds, as a parameter for atmospheric or oceanic models, or as a diagnostic tool for comparison with the SSTs produced by ocean models. However, isoline maps must be digitized and interpolated into grid data in order to be used in these applications. Herein, we propose a coupled interpolation (CI), which couples improved multi-section interpolation and single-point change surface interpolation containing orientation, for generating grid data from SST isolines. We interpolated 1049 SST isoline maps (temperature interval 1°), which cover an area of the northwestern Pacific Ocean (125°E–180°E, 26°N–50°N) and were published by the Japan Fisheries Information Service Center (JAFIC) during 1990–2000, to grid datasets with 15′ grid resolution. We assessed the quality of grid datasets by checking noise points, RMSE analysis, checking offset errors, retrieving percentage of Kuroshio axes and visually comparing inverse isotherms with original isotherms. The quality analysis and comparison with four other interpolators showed the CI interpolator to be a good technique for generating SST grid data from isotherms. We also computed the SST anomaly (SSTA) using the SST grid datasets. The amplitude values of integral SSTA in the area of 31–46°N, 170–180°E were low, whereas they were high in the SW–NE rectangular area of 35–46°N, 142–160°E.  相似文献   

9.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important.  相似文献   

10.
彭聪  周兴华  王颖 《海洋通报》2020,39(2):223-230
针对基于测高重力异常反演海底地形理论众多、选取标准无法确定的情况,利用中国南海海域内的测高重力异常和船测水深数据研究比较了重力地质法(GGM)和SmithSandwell (SAS)法两种精度高、计算速度相对较快的海底地形反演理论。其中,GGM方法的密度差异常数Δρ由向下延拓技术确定为2.15 g·cm-3,SAS方法采用移去-恢复技术得到反演波段内重力异常和水深数据。结果表明:测线分布条件一定时,水深多在-1 000 m左右或反演区域岛礁、海山等复杂海底地形较多时选取SAS方法,水深主要在-3 000 m以深的区域或海底地形复杂程度不高时选取GGM方法则能获取更好的效果,其效果最优处与船测水深在检核点处的差值最优平均值能达-0.61 m,标准差可达14.67 m。  相似文献   

11.
The composition and distribution of helium and oxygen isotopes in samples of seawater obtained at depths from surface to 300 m in the western Pacific(7°-26°N,122°-130°E) were discussed in detail.The results show that both δ18O and δ3He isoline extend eastward in the Pacific side of the Bashi Channel, which may suggest that the South China Sea water intrudes into the western Pacific by the Bashi Channel.  相似文献   

12.
南海与西太平洋海水的交换:氧、氦同位素证据   总被引:3,自引:0,他引:3  
研究了西太平洋海域(7°~26°N,122°~130°E)不同深度海水的氧、氦同位素组成和分布特征.结果表明,巴士海峡附近海域几个深度上δ18O等值线均向东弯曲,δ3He等值线也出现了类似的分布特征,可能反映了南海海水与黑潮水的混合作用.氧、氦同位素的研究结果为南海海水通过巴士海峡侵入了西太平洋提供了地球化学证据.  相似文献   

13.
Examining bathymetric and seismic reflection data collected from the deep-sea region between Taiwan and Luzon in 2006 and 2008, we identified a connection between a submarine canyon, a deep-sea channel, and an oceanic trench in the northern South China Sea. The seafloor of the South China Sea north of 21°N is characterized by two broad slopes: the South China Sea Slope to the west, and the Kaoping Slope to the east, intersected by the prominent Penghu Canyon. This negative relief axis parallels the strike of the Taiwan orogen, extends downslope in an approx. N–S direction, and eventually merges with the northern Manila Trench via a hitherto unidentified channel. The discovery of this channel is pivotal, because it allows connecting the Penghu Canyon to the Manila Trench. This channel is 80 km long and 20–30 km wide, with water depths of 3,500–4,000 m. The progressive morphological changes recorded in the aligned canyon, channel, and trench suggest that they represent three distinct segments of the same longitudinal sediment conduit from southern Taiwan to the northern Manila Trench. Major sediment input would be via the Kaoping Canyon and Kaoping Slope, with a smaller contribution from the South China Sea Slope. We determined the northern end of the Manila Trench to be located at about 20°15′N, 120°15′E, where sediment accumulation has produced a bathymetry shallower than 4,000 m, thereby abruptly terminating the trench morphology. Comparison with existing data reveals a similarity with, for example, the Papua New Guinea–Solomon Sea Plate convergent zone, another modern analog of a mountain source to oceanic sink longitudinal sediment transport system comprising canyon–channel–trench interconnections.  相似文献   

14.
Approximately 200 seamounts of different dimensions have been identified, from multibeam bathymetry maps of the Central Indian Ocean Basin (CIOB) (9°S to 16°S and 72°E to 80°E), of which 61% form eight chains that trend N-S. The seamounts are clustered above and below 12°S latitude. Area II (9°–12°S) shows a concentration of smaller seamounts (≤400 m height), and area I (12°–15°S) has a mixed population (including both less and more than 400 m height). Inspite of the differences in their height, the seamounts of these eight chains are morphologically (slope angle, flatness, basal width) corelatable. Furthermore, we suggest that height-width ratio could be useful in identifying the style of seamount eruption. The seamount chains in the CIOB probably originated from propagative fractures and were produced between 61 and 52 Ma (chrons A26 to A23) as a result of the interaction between the conjugate crusts of the Central Indian and Southeast Indian Ridges during the Indo-Eurasian collision event.  相似文献   

15.
The distributions of two swimming crabs endemic to the New Zealand region are described, mostly from material obtained at 118 of 2544 New Zealand Oceanographic Institute benthic stations sampled.

Nectocarcinus antarcticus (Jacquinot) was found within the geographic limits 34°S‐51°S and 166° E‐176° W, with concentrations around Cook Strait, the Chatham Rise, Foveaux Strait, and the Auckland Is. N. bennetti (Takeda & Miyake) occurred between 44° S and 53° S, and 165° E and 180°, most frequently in the south and west, on the ‘highs’ of the Campbell Plateau. Although the distributions overlap between 44° S and 51° S, and this overlap zone produced most of the available material, only one joint occurrence of the two species was noted. This apparent separation was not satisfactorily explained by any of the ecological factors recorded. The depth ranges of both species were broadly similar (0–550 m for TV. antarcticus, 20–474 m for JV. bennetti); both were most frequently obtained at depths less than 200 m. Both occurred primarily on the coarser sediment grades, though N. antarcticus occupied a broader range of grades than N. bennetti.

The size ranges of the two species were similar; carapace lengths were 8.0–62.0 mm for N. antarcticus and 5.8–68.0 mm for N. bennetti. The larger specimens of both species were found towards the southern limits of distribution. Larger specimens of N. antarcticus were absent from depths greater than 120 m; smaller N. antarcticus and all N. bennetti occurred throughout their respective depth ranges. Ovigerous N. antarcticus (smallest, 8.8 mm carapace length) were obtained at depths of 17–263 m from May to October; ovigerous N. bennetti (smallest 36.1 mm) were from depths of 150–183 m in May only.  相似文献   

16.
High resolution swath bathymetry of shallow water (< 200 m) oceanic seamounts is a relatively rare issue. During the recent Gorringe_2003 cruise over the Gorringe Bank (Eastern Atlantic) we collected multibeam bathymetry on the bank’s two shallow summits, Gettysburg and Ormonde in the –25/–400m depth range at a resolution rarely achieved over an oceanic seamount. We also carried out bottom samplings and ROV dives in the same bathymetric interval. The acquisition parameters and the characteristics of the echosounder employed allowed to generate a Digital Terrain Model (DTM) with metric spatial resolution upto 75–100 m depths. To ensure proper tidal corrections a tide-gauge was deployed at sea-bottom during the survey. DTM reveals for the Gettysburg Seamount an almost perfectly circular summit resulting from the blanket of bioclastic sediments over an igneous ‘core’ consisting of sheared and foliated serpentinites. The core is dissecated by N 10° W trending ridges elevating some tens of metres and filled in between by bioclastic sands. Both foliation and ridge patterns seem related to primary igneous fabric rather than later structural deformation. The overall circular shape confirms the origin of the seamount as a mantle serpentinite diapir in analogy with similar, but subduction-related, circular seamounts observed in the Bonin Trench (western Pacific). In contrast the Ormonde elongated summit follows the regional tectonic trend with a N 60° E active (seismogenic?) fault on its southeastern flank. Its basement morphology corresponds to the outcrops of igneous rocks chiefly consisting of gabbros, volcanic rocks and dyke intrusions. On both seamounts topographic profiles show that the ‘shelf’ area is somewhat convex rather than flat like that of ‘Pacific type’ guyots and is bordered by a depositional, locally erosional shelf break, located between –170 and –130 m. Various terraced surfaces and some geological evidence confirm previous observations and indicate relative sea-level oscillations with partial emersion of the two summits that seem occurred during the last glacial cycle (past 120 ka).  相似文献   

17.
根据1998年和2000年东海北部的营养盐调查资料和相应的历史资料,以及同期开展的虾类资源调查资料,研究了冬、夏季长江冲淡水的流向以及它对长江口渔场、舟山渔场硅酸盐分布规律和虾类生物量分布规律的影响。结果表明,长江冲淡水转向的原因可以归纳为4类,夏季长江冲淡水的流动界限由123°E,30.3°N到127.3°E,33°N的直线和由123°E,31.8°N到127.3°E,34.5°N的直线所围的区域。长江冲淡水给长江口渔场、舟山渔场提供了大量的硅酸盐,对提高该海区的初级生产力起到了积极的作用,有利于生物的繁衍生息,提高了生物量。最后,用该海区虾类的分布密度证实了由该水团所做出的对生物量的推论。  相似文献   

18.
A new one-minute global seafloor topography model was derived from vertical gravity gradient anomalies (VGG), altimetric gravity anomalies, and ship soundings. Ship soundings are used to constrain seafloor topography at wavelengths longer than 200 km and to calibrate the topography to VGG (or gravity) ratios at short wavelengths area by area. VGG ratios are used to predict seafloor topography for wavelength bands of 100–200 km and to suppress the effect of crust isostasy. Gravity anomalies are used to recover seafloor topography at wavelengths shorter than 100 km. The data processing procedure is described in detail in this paper. The accuracy of the model is evaluated using ship soundings and existing models, including General Bathymetric Charts of the Oceans (GEBCO), DTU10, ETOPO1, and SIO V15.1. The results show that, in the discussed regions, the accuracy of the model is better than ETOPO1, GEBCO, and DTU10. Additionally, the model is comparable with V15.1, which is generally believed to have the highest accuracy. In the north-central Pacific Ocean, the accuracy of the model increased by approximately 29.5% compared with the V15.1 model. This indicates that a more accurate seafloor topography model can be formed by combining gravity anomalies, VGG, and ship soundings.  相似文献   

19.
Coral reef calcareous sediment, a special category of rock-soil material, has representative geological structure and environmental characteristics. It is widely distributed in shallow areas of the tropical ocean; therefore the exploration instruments and technologies for engineering geology studies of coral reef calcareous sediments are very different from those used in land or deep-sea. Obtaining undisturbed cores from the Holocene unconsolidated stratum of coral reefs has been a key problem in the field of marine geology and environment surveying. The authors have designed a novel floating drilling platform equipped with a drilling machine, and successfully achieved undisturbed cores from both reef flats (with water depth 0.5 to 2 m) and a enclosed lagoon (with water depth 2–12 m) of Yongshu Reef (9°32–9°42 N, 112°52–113°04 E), southern South China Sea. Based on the detailed observation on the cores and the analysis from engineering geology, Yongshu Reef was split into reef three engineering geological zones: leading edge, reef flat (including outer reef flat, middle reef flat and inner reef flat) and lagoon. The sediments are classified in the stratum as fine sand, medium sand, coarse sand, gravel and weak-cemented reef limestone.  相似文献   

20.
《Oceanologica Acta》1999,22(5):453-471
Hydrographic data were collected from 3 to 10 September 1996 along two transects; one at 18° N and the other at 90° E. The data were used to examine the thermohaline, circulation and chemical properties of the Bay of Bengal during the withdrawal phase of the southwest monsoon. The surface salinity exhibited wide spatial variability with values as low as 25.78 at 18° N / 87° E and as high as 34.79 at 8° N / 90° E. Two high salinity cells (S > 35.2) were noticed around 100 m depth along the 90° E transect. The wide scatter in T-S values between 100 and 200 m depth was attributed to the presence of the Arabian Sea High Salinity (ASHS) water mass. Though the warm and low salinity conditions at the sea surface were conducive to a rise in the sea surface topography at 18° N / 87° E, the dynamic height showed a reduction of 0.2 dyn.m. This fall was attributed to thermocline upwelling at this location. The geostrophic currents showed alternating flows across both the transects. Relatively stronger and mutually opposite currents were noticed around 25 m depth across the 18° N transect with velocity slightly in excess of 30 cm s−1. Similar high velocity (> 40 cm s−1) pockets were also noticed to extend up to 30 m depths in the southern region of the 90° E transect. However, the currents below 250 m were weak and in general < 5 cm s−1. The net geostrophic volume transports were found to be of the order of 1.5 × 106 m3 s−1 towards the north and of 6 × 106 m3 s−1 towards west across the 18° N and 90° E transects respectively. The surface circulation patterns were also investigated using the trajectories of drifting buoys deployed in the eastern Indian Ocean around the same observation period. Poleward movement of the drifting buoy with the arrival of the Indian Monsoon Current (IMC) at about 12° N along the eastern rim of the Bay of Bengal has been noticed to occur around the beginning of October. The presence of an eddy off the southeast coast of India and the IMC along the southern periphery of the Bay of Bengal were also evident in the drifting buoy data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号