首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From May to June 2014, the geochemical characteristics of dissolved barium(Ba) in sea water and its influx from the Kuroshio into the East China Sea(ECS) were studied by investigation of the Kuroshio mainstream east of Taiwan Island and the adjacent ECS. This allowed for the scope and extent of the Kuroshio incursion to be quantitatively described for the first time by using Ba as a tracer. The concentration of Ba in the Kuroshio mainstream increased gradually downward from the surface in the range 4.91–19.2 μg L.1. In the surface layer of the ECS, the Ba concentration was highest in coastal water and gradually decreased seaward, while it was higher in coastal and offshore water but lowest in middle shelf for bottom layer. The influx of Ba from Kuroshio into the ECS during May to October was calculated to be 2.19×108 kg by a water exchange model, in which the subsurface layer had the largest portion. The distribution of Ba indicated that Kuroshio upwelled in the sea area northeast of Taiwan Island. The north-flowing water in the Taiwan Strait restrained the incursion of Kuroshio surface water onto the ECS shelf, while Kuroshio subsurface water gradually affected the bottom of the ECS from outside. The results of end member calculation, using Ba as a parameter, showed that the Kuroshio surface water had little impact on the ECS, while the Kuroshio subsurface water formed an intrusion current by climbing northwest along the bottom of the middle shelf from the sea area northeast of Taiwan Island into the Qiantang Estuary, of which the volume of Kuroshio water was nearly 65%. Kuroshio water was the predominant part of the water on the outer shelf bottom and its proportion in areas deeper than the 100 m isobath could reach more than 95%. In the DH9 section(north of Taiwan Island), Kuroshio subsurface water intruded westward along the bottom from the shelf edge and then rose upward(in lower proportion). Kuroshio water accounted for 95% of the ocean volume could reach as far as 122°E. Ba was able to provide detailed tracing of the Kuroshio incursion into the ECS owing to its geochemical characteristics and became an effective tracer for revealing quantitative interactions between the Kuroshio and the ECS.  相似文献   

2.
《Continental Shelf Research》2005,25(9):1023-1042
Four bottom-mounted current profilers were deployed across the Taiwan Strait from September 28 to December 14 of 1999 to monitor the current velocity when the northeast monsoon was strong. Results indicate both diurnal and semidiurnal tidal currents were primarily barotropic. The barotropic diurnal tide might be explained by a single Kelvin wave propagating along the Mainland China coast from north to south. However, the barotropic semidiurnal tide manifested as a more complicated form in the Taiwan Strait.The subtidal current generally fluctuated with the northeast winds. When the northeast wind was weak, the along- and cross-strait subtidal current flowed primarily against the wind and toward Taiwan, respectively. As the northeast wind intensified, the along-strait current flowed downwind, brought the cold China coastal water southward, and formed a baroclinic velocity front in the western portion of the Taiwan Strait. The Ekman effect forced the cross-strait current toward Mainland China in the upper water column and toward Taiwan in the lower water column, respectively. The along-strait volume transport, estimated from interpolated current velocity, varied from −5 to 2 Sv with a mean value of 0.12±0.33 Sv. Similar transport was also estimated from the sea level difference across the Taiwan Strait.Although the local wind played a dominant role for the fluctuations of current velocity and transport in the Taiwan Strait, it could be not the only important factor. The current or transport directed frequently against the wind could be related to the northward current, which was consistently observed in the Penghu Channel.  相似文献   

3.
An analysis of surface current data obtained from 2002 to 2005 using long-range high-frequency radar provides the first evidence for the presence of biweekly (11–14 day) periodic variations of the Kuroshio axis northeast of Taiwan. This analysis clarifies the spatiotemporal characteristics of these variations and reveals that cyclonic/anticyclonic eddies propagating along the shelf slope from the vicinity of the deep channel east of Taiwan induce these variations northeast of Taiwan. The behavior of the cyclonic/anticyclonic eddies on the shelf slope is well explained by 2nd-mode interior shelf waves advected by the Kuroshio's mean flow. Remote effects from the vicinity of the deep channel east of Taiwan, or from outside the East China Sea, are believed to play an important role in the generation of these biweekly periodic variations of the Kuroshio axis northeast of Taiwan. Moreover, on the shelf slope, these variations cause an onshore current across the shelf slope, suggesting topographically controlled upwelling. Therefore, the biweekly periodic variations of the Kuroshio axis northeast of Taiwan might contribute not only to the onshore transport of Kuroshio surface water but also to transport nutrient-rich Kuroshio subsurface water onto the shelf in the East China Sea.  相似文献   

4.
The seasonal variations of the Kuroshio intrusion pathways northeast of Taiwan were investigated using observational data from satellite-tracked sea surface drifters and a numerical particle-tracking experiment based on a high-resolution numerical ocean model. The results of sea surface drifter data observed from 1989 to 2013 indicate that the Kuroshio surface intrusion follows two distinct pathways: one is a northwestward intrusion along the northern coast of Taiwan Island, and the other is a direct intrusion near the turn of the shelf break. The former occurs primarily in the winter, while the latter exists year round. A particle-tracking experiment in the high-resolution numerical model reproduces the two observed intrusion paths by the sea surface drifters. The three-dimensional structure of the Kuroshio intrusion is revealed by the model results. The pathways, features and possible dynamic mechanisms of the subsurface intrusion are also discussed.  相似文献   

5.
East China Sea (ECS) is bounded by the continent where the fourth largest river of Changjiang discharges large amounts of freshwater to the west and by the Kuroshio in the East and connected to the South China Sea via Taiwan Strait, therefore water characteristics are very complex and undergo great seasonal changes. The dominant source waters in the ECS are found to be Kuroshio Surface Water (KSW), Kuroshio Sub-surface Water (KSSW), Changjiang Diluted Water (CDW), and Taiwan Strait Warm Water (TSWW). Optimum multiparameter analysis (OMP) using temperature, salinity and 226Ra were applied to quantify the contribution of individual source water to the surface water of the ECS in summer. The successful application of radium isotope in OMP analysis demonstrates the usefulness of 226Ra in the discrimination of mixing among multiple water sources. In 1987, one interesting phenomenon was that the KSSW entered the surface with the upwelling at the margin of continental shelf, and affected the coastal water obviously. In 1999, the TSWW extended northward continuously up to the Changjiang Estuary.  相似文献   

6.
Using a new functional analysis tool, multiscale window transform(MWT), and the MWT-based localized multiscale energetics analysis and canonical transfer theory, this study reconstructs the Kuroshio system on three scale windows, namely,the mean flow window, the interannual-scale(low-frequency) window, and the transient eddy window, and investigates the climatological characteristics of the intricate nonlinear interactions among these windows. Significant upscale energy transfer is observed east of Taiwan, where the mean Kuroshio current extracts kinetic energy from both the interannual and eddy windows.It is found that the canonical transfer from the interannual variability is an intrinsic source that drives the eddy activities in this region. The multiscale variabilities of the Kuroshio in the East China Sea(ECS) are mainly controlled by the interaction between the mean flow and the eddies.The mean flow undergoes mixed instabilities(i.e., both barotropic and baroclinic instabilities) in the southern ECS, while it is barotropically stable but baroclinically unstable to the north. The multiscale interactions are found to be most intense south of Japan, where strong mixed instabilities occur; both the canonical transfers from the mean flow and the interannual scale are important mechanisms to fuel the eddies. It is also found that the interannual-scale energy mainly comes from the barotropically unstable jet, rather than the upscale energy transfer from the high frequency eddies.  相似文献   

7.
It has long been recognized that the circulation in the East China Sea (ECS) and Japan/East Sea (JES) is closely related with that in Pacific, especially with the Kuroshio (e.g., Nitani[1], Hi-daka[2]). Based on current measurements in the Taiwan Strait a…  相似文献   

8.
基于卫星测高交叉点的海洋表面地转流速度   总被引:3,自引:1,他引:2       下载免费PDF全文
在流体静力平衡状态下,海洋Coriolis力和压力梯度平衡就形成地转流,世界上大多数海流都近似为地转流.本文利用卫星测高交叉点方法计算海洋表面地转流速度,分析了利用测高交叉点计算地转流速度的不确定性,上升和下降弧段的海面倾斜在分辨率50 km上可以达到10-7量级,才可能获得优于10 cm/s的地转流速度.在低纬度或者纬度接近卫星轨道倾角的地区,由交叉点方法计算的地转流速度精度低于中纬度地区.以中国台湾东部黑潮为试验区,利用最新的中国台湾周边海域大地水准面模型参考场计算高精度的大地水准面高,利用TOPEX/Poseidon和Jason-1的GDR数据(2002~2005年)计算海面高,然后计算交叉点的动力高,确定交叉点的地转流速度,结果与中国台湾NCOR(National Center for Ocean Research)的流速基本一致.  相似文献   

9.
After experiencing 8-day combined tidal current, circulation and wave actions, scour depth surrounding cylinder object freely resting on sandy seabed in the East China Sea (ECS) in January is numerically predicted using the DRAMBUIE model designed for scour burial, which has been widely used and verified by in-situ experiments. During the period of numerical integration, the value of time t is generally variable at every time step via the special time-stepped approach developed by this paper to eliminate the time error. The tidal current velocity, wave orbital velocity and the depth-averaged circulation in the ECS have been obtained by numerical simulations with Estuarine Coastal and Ocean Model (ECOM), Simulating Waves Nearshore (SWAN) model and Regional Ocean Modeling System (ROMS) model respectively. The control experiment and several idealized test cases on influential factors in scour depth reveal that the dominant hydrodynamic factor is tidal current in the ECS under normal weather conditions, and the impacts of shelf circulation and wave motion on local scour almost can be ignored with an exception of the Kuroshio area where the high-speed mainstream of Kuroshio flows. It is also indicated that in sandy sediments, the distribution of scour depth nearly follows the pattern of tidal currents, while the secondary influencing factor on scour depth appears to be grain size of sandy sediment in the ECS. Numerical tests on sediment grain size further testify that much finer sand is more easily scoured, and an increasing trend for scour depth with reduction of grain size is displayed due to imposed resistance of larger sized particles. Three aspects explored by this paper, including the empirical equations in the Defense Research Agency Mine Burial Environment (DRAMBUIE) model, the accuracy of inputs and infill process can severely affect the prediction of scour depth surrounding cylinder objects freely resting on sandy seabed in the ECS.  相似文献   

10.
Ocean Dynamics - The temporal variability of volume transport from the North Pacific Ocean to the East China Sea (ECS) through the Kerama Gap (between Okinawa Island and Miyakojima Island—a...  相似文献   

11.
Tal Ezer 《Ocean Dynamics》2018,68(10):1259-1272
Tropical storms and hurricanes in the western North Atlantic Ocean can impact the US East Coast in several ways. Direct effects include storm surges, winds, waves, and precipitation and indirect effects include changes in ocean dynamics that consequently impact the coast. Hurricane Matthew [October, 2016] was chosen as a case study to demonstrate the interaction between an offshore storm, the Gulf Stream (GS) and coastal sea level. A regional numerical ocean model was used, to conduct sensitivity experiments with different surface forcing, using wind and heat flux data from an operational hurricane-ocean coupled forecast system. An additional experiment used the observed Florida Current (FC) transport during the hurricane as an inflow boundary condition. The experiments show that the hurricane caused a disruption in the GS flow that resulted in large spatial variations in temperatures with cooling of up to ~?4 °C by surface heat loss, but the interaction of the winds with the GS flow also caused some local warming near fronts and eddies (relative to simulations without a hurricane). A considerable weakening of the FC transport (~?30%) has been observed during the hurricane (a reduction of ~?10 Sv in 3 days; 1Sv?=?106 m3 s?1), so the impact of the FC was explored by the model. Unlike the abrupt and large wind-driven storm surge (up to 2 m water level change within 12 h in the South Atlantic Bight), the impact of the weakening GS on sea level is smaller but lasted for several days after the hurricane dissipated, as seen in both the model and altimeter data. These results can explain observations that show minor tidal flooding along long stretches of coasts for several days following passages of hurricanes. Further analysis showed the short-term impact of the hurricane winds on kinetic energy versus the long-term impact of the hurricane-induced mixing on potential energy, whereas several days are needed to reestablish the stratification and rebuild the strength of the GS to its pre-hurricane conditions. Understanding the interaction between storms, the Gulf Stream and coastal sea level can help to improve prediction of sea level rise and coastal flooding.  相似文献   

12.
海平面变化是社会经济发展和科学研究的重要内容.利用1993年1月至2012年12月共20年的TOPEX/Poseidon、Jason-1和Jason-2卫星测高数据,研究中国海海平面的时空变化.首先通过三颗卫星伴飞阶段数据得到三颗卫星之间的逐点海面高系统偏差,进行逐点海面高改正,建立了20年的中国海海面高异常时间序列.分析了中国海海面高异常空间分布,给出了1月到12月月均平均海平面异常的空间变化规律.分析了中国海海面高异常的时变规律,分别给出了年、季度和月的海面上升速率.利用小波分析研究了中国海海面高异常周期变化规律,分别给出了渤海、黄海、东海和南海的海面高变化周期.讨论了ENSO对海面高异常的影响.  相似文献   

13.
A recently extended and spatially rich English Channel sea level dataset has been used to evaluate changes in extreme still water levels throughout the 20th century. Sea level records from 18 tide gauges have been rigorously checked for errors and split into mean sea level, tidal and non-tidal components. These components and the interaction between surge and tide have been analysed separately for significant trends before determining changes in extreme sea level. Mean sea level is rising at 0.8–2.3 mm/year, depending on location. There is a small increase (0.1–0.3 mm/year) in the annual mean high water of astronomical tidal origin, relative to mean sea level, and an increase (0.2–0.6 mm/year) in annual mean tidal range. There is considerable intra- and inter-decadal variability in surge intensity with the strongest intensity in the late 1950s. Storm surges show a statistically significant weak negative correlation to the winter North Atlantic Oscillation index throughout the Channel and a stronger significant positive correlation at the boundary with the southern North Sea. Tide–surge interactions increase eastward along the English Channel, but no significant long-term changes in the distribution of tide–surge interaction are evident. In conclusion, extreme sea levels increased at all of the 18 sites, but at rates not statistically different from that observed in mean sea level.  相似文献   

14.
Banda Sea surface-layer divergence   总被引:3,自引:0,他引:3  
Sea-surface temperature (SST) within the Banda Sea varies from a low of 26.5 °C in August to a high of 29.5 °C in December and May. Ekman upwelling reaches a maximum in May and June of approximately 2.5 Sv (Sv=106 m3 s?1) with Ekman downwelling at a maximum in February of approximately 1.0 Sv. The Ekman pumping annual average is 0.75 Sv upwelling. During the upwelling period, from April through December the average Ekman upwelling velocity is 2.36 × 10?6 m s?1 (1.27 Sv). ENSO modulation is generally within 0.5 Sv of the mean Ekman curve, with weaker (stronger) July to October upwelling during El Niño (La Niña). Combined TOPEX/POSEIDON and ERS 1993–1999 altimeter data reveal a 33 cm maximum range of sea level. Steric effects are minor, with well over 80% of the sea level change due to mass divergence (some bias due to unresolved tidal aliasing may still be present). The annual and interannual sea level behavior follows the monsoonal and ENSO phenomena, respectively. Lower (higher) sea level occurs in the southeast (northwest) monsoon and during El Niño (La Niña) events. The surface-layer volume anomaly and the surface-layer divergence, assuming a two-layer ocean, are estimated. Maximum divergence is attained during the transitional monsoon months of October/November: 1.7 Sv gain (convergence), with matching loss (divergence) in the April/May. During the El Niño growth period of 1997 the surface layer is divergent, but in 1998 when the El Niño was on the wane, the average rate of change is convergent. Surface-layer divergence attains values as high as 4 Sv. Banda Sea surface-water divergence correlates reasonably well with the 3-month lagged export of surface (upper 100?m) water into the Indian Ocean as estimated by a shallow pressure gauge array. It is concluded that the Banda Sea surface-layer divergence influences the timing and transport profile of the Indonesian throughflow export into the Indian Ocean, as proposed by Wyrtki in 1958, and that satellite altimetry may serve as an effective means of monitoring this phenomena.  相似文献   

15.
Kodaira  Tsubasa  Waseda  Takuji 《Ocean Dynamics》2019,69(11):1373-1385

The Kuroshio current is well known for generating cold wakes behind islands over Izu Ridge in Northwestern Pacific. Observational data from the geostationary Himawari-8 satellite for 2015–2017 revealed the occurrence of cold waters during the period when the Kuroshio current flows away from the islands. With a focus on tidal currents, this study presents an investigation of dynamical processes responsible for the formation of areas with low sea surface temperature (SST) through the adoption of a high-resolution numerical ocean model for an event that happened in July 2017. Areas with cold water emerged only when tidal currents are included in the numerical model. The model results indicate the cold surface waters are formed in the vicinity of the islands because of upwelling and vertical mixing. Qualitative features of the cold water formation for each island are found to depend on its size, topography, and ambient currents. Near Kozu Island, the tidal excursion is large enough to cause eddy shedding. These shed eddies are stirred by tidal currents to extend the surface cooling effect to wider areas. Near Hachijo Island, a persistent wake is formed by the ambient northward current. Inclusion of tidal currents destabilizes the wake, and consequently leads to the formation of a low SST area, although no clear eddy shedding is detected. The flow patterns around the islands are classified using an additional non-dimensional parameter, defined as the ratio between tidal excursion and island diameter.

  相似文献   

16.
《Continental Shelf Research》2008,28(18):2574-2583
Horizontal distribution patterns of jack mackerel Trachurus japonicus larvae were investigated extensively in the East China Sea (ECS) along the shelf-break region between 26° and 30°N during February–March based on fine-scale larval sampling in 2002 and 2003. A total of 2363 T. japonicus ranging from 1.2 to 12.4 mm body length (BL) were collected at 310 bongo net sampling stations, of which larvae <10 mm BL accounted for 99.1%. In both years, newly hatched larvae (<3 mm BL) were concentrated in the shelf-break region mainly in the southern part of ECS between 26° and 27°N in warm water of 21–23 °C, suggesting that their primary spawning ground existed in and around this area. With growth, larvae were transported in two different directions, i.e., northward and northeastward, corresponding closely with the direction of the Kuroshio Branch Current north of Taiwan (KBCNT) and the Kuroshio, respectively. Replicate sampling cruises at 2 week intervals were conducted in 2003, and the larval distribution pattern changed significantly between the sampling cruises, suggesting that the transport process fluctuates over relatively short periods in relation to oceanographic processes. The transport speed by the KBCNT was estimated to be 0.13–0.28 knots based on the larval distribution, which is one order of magnitude slower than that by the Kuroshio (1.5–3 knots). Habitat temperature gradually declined with growth in both the Kuroshio and KBCNT, but in the KBCNT it was 1–2 °C lower than in the Kuroshio. Our results suggest that the two different larval transport processes lead to a significant difference in the transport route, habitat conditions (such as temperature and food), and site where young fish recruit to the demersal habitat, which will result in different survival and recruitment processes.  相似文献   

17.
基于日本“长风号”调查船在 1 997与 1 998年 1 0个航次的CTD资料 ,采用改进逆方法及改进动力计算方法对东海黑潮的流速、流量进行计算 .1 997年 5月出现了El Ni no现象 ,东海黑潮流量在 1 997年夏季减少 ,1 997年东海黑潮的平均流量也减少 .在 1 997年 1月与 6— 7月 ,即El Ni no现象出现前后 ,东海环流的流态有些不同 .在 1 998年 4至 1 1月黑潮在PN断面出现多流核心的结构 ,特别在 1 0— 1 1月出现 3个流核心 ,黑潮主流核的位置秋季时东移 .1 995年与 1 998年都是东海黑潮异常年 ,这些异常现象可能与冲绳岛以南出现的反气旋涡的强度变化以及从El Ni no现象过渡到La Ni na现象有关  相似文献   

18.
1997—1998年El-Ni?o至La-Nia期间东海黑潮的变异   总被引:3,自引:1,他引:3       下载免费PDF全文
基于日本“长风号”调查船在1997与1998年10个航次的CTD资料,采用改进逆方法及改进动力计算方法对东海黑潮的流速、流量进行计算. 1997年5月出现了El-Ni?o现象,东海黑潮流量在1997年夏季减少,1997年东海黑潮的平均流量也减少. 在1997年1月与6—7月,即El-Ni?o现象出现前后,东海环流的流态有些不同. 在1998年4至11月黑潮在PN断面出现多流核心的结构,特别在10—11月出现3个流核心,黑潮主流核的位置秋季时东移. 1995年与1998年都是东海黑潮异常年,这些异常现象可能与冲绳岛以南出现的反气旋涡的强度变化以及从El-Ni?o现象过渡到La-Ni?a现象有关.  相似文献   

19.
The mean sea level and mean bed stress due to tidal co-oscillations in the presence of quadratic friction is examined analytically and numerically. In some idealised situations under conditions of near M4 shelf resonances it is shown that phase relationships tend to exist between the M2 tidal currents and the M4 tidal currents which combine to give maximum currents in the flood or ebb direction. In the presence of quadratic friction these effects result in a mean bed stress and affect mean sea level. It is shown that these idealised responses are in part relevant to the sea level differences and sand transport paths due to tides around the British Isles.  相似文献   

20.
The sea level and the barotropic, frictional circulation response for the New York Bight are used to demonstrate the effects of external sea-level forcing, bathymetry, and variable friction. The governing equation is the steady, integrated vorticity equation and is computed by finite differencing over a curvilinear grid conforming to the 10- and 100-m isobaths and extending for 250 km alongshore. The boundary conditions are based on the hypothesis that the dynamics of the shelf are driven by the external sea-level gradient and the coastal no-flux condition; and consequently the conditions at the lateral boundaries are dependent thereon. Therefore, the external sea-level slope must be independently specified, and the lateral boundary conditions must be dependently generated. The diabathic component of the external sea slope forces the calm wind circulation by its effect on the transport through the upstream boundary; and the parabathic component has also an important modifying effect by forcing a shelf convergent transport. The parabathic sea slope at the coast is independent of its offshore value, being instead a direct product of the coastal boundary condition.The bottom friction is expressed as related to the sea level through a bottom length parameter and a veer angle, both of which are taken to increase shoreward. An additional bottom stress component, related to the surface stress, is determined for bottom depths less than the Ekman depth. Such bottom stress variability produces significant alterations in the nearshore flow field, over the constant bottom stress formulation, by reducing it and causing it to veer downgradient and downwind in the nearshore.The model is forced by different wind directions and the results are discussed. The circulations generally conform to the observed mean flow patterns, but with several smaller-scale features. The strong bathymetric feature of the Hudson Shelf Valley causes a polarized up- and downvalley flow for winds with an eastward or westward component, respectively. Under mean westerly winds, there is a divergence in the shelf valley flow at about the 60-m isobath. The Apex gyre existing off the western tip of Long Island becomes more extensive for winds changing from northeast to southwest. Mean flow reversals (to the northeast) occur off both Long Island and New Jersey for wind directions changing counterclockwise from northwest to southeast and from west to east, respectively. Southeastward transport over the outer New Jersey shelf tends to be enhanced by wind and external sea-level conditions; and the transport over the New Jersey midshelf, particularly in the lee of the shelf valley, tends to be weak and variable also under these mean conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号