首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z > 0.5) AGNs. First, using the archival IUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and Mg II/C IV emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample as calibration, we found two new relationships for determining the black hole mass with the full width at half maximum and the luminosity of Mg II/C IV line. We then apply the relations to estimate the black hole masses of the AGNs in the Large Bright Quasar Survey and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the RBLR-LMgII/C IV relation is consistent with that from the RBLR-L3000 (?)/1350(?) relation. For radio-loud AGNs, however, the mass estimated from the RBLR-LMgII/CIV relation is sys- tematically lower than that from the continuum luminosity L3000(?)/1350(?). Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasize once again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosities should be used to estimate the black hole masses of high redshift radio-loud AGNs.  相似文献   

2.
We constructed a grid of relativistic models for standard high-relative-luminosity accretion α-disks around supermassive Kerr black holes (BHs) and computed X-ray spectra for their hot, effectively optically thin inner parts by taking into account general-relativity effects. They are known to be heated to high (~106–109 K) temperatures and to cool down through the Comptonization of intrinsic thermal radiation. Their spectra are power laws with an exponential cutoff at high energies; i.e., they have the same shape as those observed in active galactic nuclei (AGNs). Fitting the observed X-ray spectra of AGNs with computed spectra allowed us to estimate the fundamental parameters of BHs (their mass and Kerr parameter) and accretion disks (luminosity and inclination to the line of sight) in 28 AGNs. We show that the Kerr parameter for BHs in AGNs is close to unity and that the disk inclination correlates with the Seyfert type of AGN, in accordance with the unification model of activity. The estimated BH masses Mx are compared with the masses Mrev determined by the reverberation mapping technique. For AGNs with luminosities close to the Eddington limit, these masses agree and the model under consideration may be valid for them. For low-relative-luminosity AGNs, the differences in masses increase with decreasing relative luminosity and their X-ray emission cannot be explained by this model.  相似文献   

3.
In this paper, the sizes of the broad emission line regions (BLRs) and black hole (BH) masses of double-peaked broad low-ionization emission line emitters (DBP emitters) are compared using different methods: virial BH masses versus BH masses from stellar velocity dispersions, the size of BLRs from the continuum luminosity versus the size of BLRs from the accretion disc model. First, the virial BH masses of DBP emitters estimated by the continuum luminosity and linewidth of broad Hβ are about six times (a much larger value, if including another DBP emitters, of which the stellar velocity dispersions are traced by the linewidths of narrow emission lines) larger than the BH masses estimated from the relation   M BH–σ  which is a more accurate relation to estimate BH masses. Second, the sizes of the BLRs of DBP emitters estimated by the empirical relation of   R BLR– L 5100 Å  are about three times (a much larger value, if including another DBP emitters, of which the stellar velocity dispersions are traced by the linewidths of narrow emission lines) larger than the mean flux-weighted sizes of BLRs of DBP emitters estimated by the accretion disc model. The higher electron density of BLRs of DBP emitters would be the main reason which leads to smaller size of BLRs than the predicted value from the continuum luminosity.  相似文献   

4.
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low-mass stars, forming a high concentration cusp. Same physical region may also contain very high-density molecular clouds and accretion discs that are needed to fuel supermassive black hole (SMBH) activity. Here we estimate gas capture rates on to the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This 'diffuse' emission may be of importance for local moderately bright active galactic nuclei (AGNs), especially low-luminosity AGNs. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.  相似文献   

5.
The sizes of the Broad Line Region (BLR) of some Seyfert 1 galax-ies and nearby quasars can be determined by the reverberation mapping method.Combining with the observed FWHM of Hβ emission line and assuming that themotion of BLR clouds is virialized, the black hole masses of these objects have beenestimated. However, this method strongly depends on the poorly-understood geom-etry and inclination of the BLR. On the other hand, a tight correlation between theblack hole mass and the bulge velocity dispersion was recently found for both activeand nearby inactive galaxies. This may provide another method, independent of theBLR geometry, for estimating the black hole mass. Using this method for estimatingthe black hole mass and combining with the measured BLR size and FWHM of Hβemission line, we derived the BLR inclination angles for 20 Seyfert I galaxies underthe assumption that the BLR is disk-like. The derived inclination angles agree wellwith those derived previously by fitting the UV continuum and Hβ emission lineprofiles. Adopting a relation between the FWHMs of [OⅢ]λ5007 forbidden line andthe stellar velocity dispersion, we also estimated the BLR inclinations for 50 nar-row line Seyfert 1 galaxies (NLSls). We found that the inclinations of broad LineSeyfert 1 galaxies (BLS1s) are systematically greater than those of NLS1s, whichseldom exceed 30. This may be an important factor that leads to the differencesbetween NLS1s and BLS1s if the BLR of NLS1s is really disk-like.  相似文献   

6.
Using the archived optical spectra of NGC 5548 between 1989 and 2001, we derived the optical spectral index by fitting the spectra in wavelength windows unaffected by strong emission lines. We found that the index is anti-correlated with the continuum luminosity at 5100 A with a correlation coefficient of -0.8. Based on the standard thin accretion disk model, we investigated whether the correlation is related to the variations of the dimensionless accretion rate m (mass accretion rate in Eddington unit), or the inner radius of the accretion disk Rin, or both. The correlation can be modeled well using a co-variable mode of Rin/Rs = 12.5m-0.8 (Rs is Schwarzschild radius). As luminosity increases, m increases from 0.05 to 0.16 and at the same time Rin decreases from 133.9.RS to 55.5.RS, consistent with the prediction for a transition radius within which an ADAF structure exists. We concluded that the change of both inner accretion radius and the dimensionless accretion rate are key factors for the variation  相似文献   

7.
We explore the relationship between black hole mass (MBH) and the motion of the jet components for a sample of blazars. The Very Long Baseline Array (VLBA) 2cm Survey and its continuation: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments (MOJAVE) have observed 278 radio-loud AGNs, of which 146 blazars have reliable measurements of their apparent velocities of the jet components. We calculate the minimal Lorentz factors for these sources from their measured apparent velocities, and their black hole masses ate estimated with their broad-line widths. A sig-nificant intrinsic correlation is found between black hole masses and the minimal Lorentz factors of the jet components. The Eddington ratio is only weakly correlated with the min-imal Lorentz factor, which may imply that the Blandford-Znajek (BZ) mechanism may dominate over the Blandford-Payne (BP) mechanism for the jet acceleration (at least) in blazars.  相似文献   

8.
Measuring the black hole masses of high-redshift quasars   总被引:1,自引:0,他引:1  
A new technique is presented for determining the black hole masses of high-redshift quasars from optical spectroscopy. The new method utilizes the full-width at half-maximum (FWHM) of the low-ionization Mg  ii emission line and the correlation between the broad-line region (BLR) radius and the continuum luminosity at 3000 Å. Using archival ultraviolet (UV) spectra it is found that the correlation between BLR radius and 3000-Å luminosity is tighter than the established correlation with 5100-Å luminosity. Furthermore, it is found that the correlation between BLR radius and 3000-Å continuum luminosity is consistent with a relation of the form   R BLR∝λ L 1/2λ  , as expected for a constant ionization parameter. Using a sample of objects with broad-line radii determined from reverberation mapping it is shown that the FWHM of Mg  ii and Hβ are consistent with following an exact one-to-one relation, as expected if both Hβ and Mg  ii are emitted at the same radius from the central ionizing source. The resulting virial black hole mass estimator based on rest-frame UV observables is shown to reproduce black hole mass measurements based on reverberation mapping to within a factor of 2.5 (1σ). Finally, the new UV black hole mass estimator is shown to produce identical results to the established optical (Hβ) estimator when applied to 128 intermediate-redshift  (0.3 < z < 0.9)  quasars drawn from the Large Bright Quasar Survey and the radio-selected Molonglo quasar sample. We therefore conclude that the new UV virial black hole mass estimator can be reliably used to estimate the black hole masses of quasars from   z ∼ 0.25  through to the peak epoch of quasar activity at   z ∼ 2.5  via optical spectroscopy alone.  相似文献   

9.
In a previous paper, it was suggested that contamination of the nuclear luminosity by the host galaxy plays an important role in determining the parameters of the standard a disk of AGNs. Using the nuclear absolute B band magnitude instead of the total absolute B band magnitude, we have recalculated the central black hole masses, accretion rates and disk inclinations for 20 Seyfert 1 galaxies and 17 Palomar-Green (PG) quasars. It is found that a small value of a is needed for the Seyfert 1 galaxies than for the PG quasars. This difference in a possibly leads to the different properties of Seyfert 1 galaxies and quasars. Furthermore, we find most of the objects in this sample are not accreting at super-Eddington rates if we adopt the nuclear optical luminosity in our calculation.  相似文献   

10.
Echo mapping makes use of the intrinsic variaibility of the continuum source in active galactic nuclei to map out the distribution and kinematics of line‐emitting gas from its light travel time‐delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line‐emitting region in about three dozen AGNs. The dynamics of the line‐emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black‐hole masses in AGNs. We discuss requirements for future echo‐mapping experiments that will yield the high‐quality velocity–delay maps of the broad‐line region that are needed to determine its physical nature. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing owing to their continuum as well as emission-line properties. The observed peculiar properties of the NLS1s are believed to be as a result of an accretion rate close to the Eddington limit. As a consequence of this, for a given luminosity, NLS1s have smaller black hole (BH) masses compared with normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low-redshift, low-luminosity analogues of high-redshift quasars. We propose that NLS1s may reside in rejuvenated, gas-rich galaxies. We also argue in favour of collisional ionization for production of Fe  ii in active galactic nuclei.  相似文献   

12.
It is known that the dependence of the emission-line luminosity of a typical cloud in the active galactic nuclei (AGN) broad-line regions (BLRs) upon the incident flux of ionizing continuum can be non-linear. We study how this non-linearity can be taken into account in estimating the size of the BLR by means of the 'reverberation' methods. We show that the BLR size estimates obtained by cross-correlation of emission-line and continuum light curves can be much (up to an order of magnitude) less than the values obtained by reverberation modelling. This is demonstrated by means of numerical cross-correlation and reverberation experiments with model continuum flares and emission-line transfer functions and by means of practical reverberation modelling of the observed optical spectral variability of NGC 4151. The time behaviour of NGC 4151 in the Hα and Hβ lines is modelled on the basis of the observational data by Kaspi et al. and the theoretical BLR model by Shevchenko. The values of the BLR parameters are estimated that allow to judge on the size and physical characteristics of the BLR. The small size of the BLR, as determined by the cross-correlation method from the data of Kaspi et al., is shown to be an artefact of this method. So, the hypothesis that the BLR size varies in time is not necessitated by the observational data.  相似文献   

13.
Active galactic nuclei (AGNs) form two distinct sequences on the radio-loudness–Eddington ratio plane. The ‘upper’ sequence contains radio selected AGNs, the ‘lower’ sequence is composed mainly of optically selected AGNs. The sequences mark the upper bounds for the radio-loudness of two distinct populations of AGNs, hosted, respectively, by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the efficiency of jet production in AGNs. We speculate that this additional parameter is the spin of the black hole, assuming that black holes in giant elliptical galaxies have (on average) much larger spins than black holes in disc galaxies. Possible evolutionary scenarios leading to such a spin dichotomy are discussed. The galaxy-morphology related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars being hosted by giant ellipticals is radio-quiet. This indicates that the production of powerful jets at high accretion rates is in most cases suppressed and, in analogy to X-ray binary systems (XRB) during high and very high states, may be intermittent. Such intermittency can be caused by switches between two different accretion modes, assuming that only during one of them an outflow from the central engine is sufficiently collimated to form a relativistic jet.  相似文献   

14.
The redshift, central black hole mass and accretion rate are important parameters when studying the AGN evolution. The central black hole masses for 172 quasars and Seyfert galaxies are calculated in this paper using the reverberation mapping method. The distributions of central black hole masses, redshifts and the Eddington accretion rates are analyzed, to verify the transition from the quasar to the Seyfert galaxy in the course of evolution.  相似文献   

15.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

16.
The broad X-ray iron line, detected in many active galactic nuclei, is likely to be produced by fluorescence from the X-ray-illuminated central parts of an accretion disc close to a supermassive black hole. The time-averaged shape of the line can be explained most naturally by a combination of special and general relativistic effects. Such line profiles contain information about the black hole spin and the accretion disc, as well as the geometry of the emitting region, and may help to test general relativity in the strong gravity regime. In this paper we embark on the computation of the temporal response of the line to the illuminating flux. Previous studies concentrated on the calculation of reverberation signatures from static sources illuminating the disc. In this paper we focus on the more physically justified case of flares located above the accretion disc and corotating with it. We compute the time-dependent iron line, taking into account all general relativistic effects, and show that its shape is of a very complex nature, and we also present light curves accompanying the iron line variability. We suggest that present and future X-ray satellites like XMM or Constellation-X may be capable of detecting features present in the computed reverberation maps.  相似文献   

17.
It has recently been suggested that Compton down-scattering may give rise to the broad iron K α line seen in the X-ray spectrum of the Seyfert 1 galaxy MCG–6-30-15. This model suggests that the Comptonizing optically thick plasma surrounding the central X-ray source has a temperature of 0.5 keV and a large radius of 1014 cm. This offers an alternative to the standard model whereby the broadening of the iron line is solely the result of strong general relativistic effects. We revise the Comptonization model and show that statistically the disc-line model gives a much better fit to the time average of the data analysed by Iwasawa et al. in 1996 and 1999. We also demonstrate that the Comptonization model has problems with simultaneous fitting of the redshifted tail and the core of the line. We show that, in the case of the 1996 data, the best-fitting Thomson depth τ ∼1.6 is consistent with the lack of continuum break, which is constrained to be at photon energies E ≳100 keV. However, the total amount of power in the UV component required to cool the Comptonizing cloud exceeds the Eddington limit. For large black hole masses relativistic effects are important and for small masses the Eddington limit is exceeded by a larger factor. In the case of the 1999 data, the best-fitting Thomson depth is τ ∼5.7; this would imply the existence of a break in the continuum at E ∼16 keV, which is not observed. (However, we point out that the down-scattering break may be diluted if a fraction of the continuum is observed directly.) This rules out Comptonization as the principal mechanism to explain the shape of the Fe K α line in MCG–6-30-15.  相似文献   

18.
光学波段的“变脸”AGN (changing-look Active Galactic Nucleus, CL AGN)是光谱类型发生变化AGN的统称.近年来,越来越多观测证据表明这类现象与中央超大质量黑洞吸积活动有关.而黑洞吸积率的变化可能会引起喷流的增强或者减弱,进而导致射电波段观测性质的变化.在已发表的文献中,收集了74个光学波段证认的“变脸”AGN、90个“变脸”AGN的候选体.基于这个目前最大并且选源方式多样化的非完备样本,探讨了“变脸”AGN在射电波段的观测性质.从澳大利亚平方公里阵先导设备(Australian Square Kilometre Array (SKA) Pathfinder, ASKAP)和美国甚大阵甚大阵(Very Large Array, VLA)的4大射电巡天观测中,发现了51个“变脸”AGN (含21个候选体)在0.9–3 GHz存在射电波段的对应体,样本的射电探测率约为41%,与一般AGN的射电探测率无显著区别.此外,分析了这些源的射电谱指数,发现在1.4 GHz和3 GHz频段“变脸”AGN相对于一般射电源有较平的射电谱.该统计结果或可解释为“...  相似文献   

19.
Active galactic nuclei (AGNs) in low surface brightness galaxies (LSBGs) have received little attention in previous studies. We present a detailed spectral analysis of 194 LSBGs from the Impey et al. (1996) APM LSBG sample which has been observed spec-troscopically by the Sloan Digital Sky Survey Data Release 5 (SDSS DR5). Our elaborate spectral analysis enables us to carry out, for the first time, reliable spectral classification of nuclear processes in LSBGs based on the standard emission line diagnostic diagrams in a rigorous way. Star-forming galaxies are common, as found in about 52% of LSBGs. We find that, contrary to some previous claims, the fraction of galaxies that contain AGNs is significantly lower than that found in nearby normal galaxies of high surface brightness. This is qualitatively in line with the finding of Impey et al. This result holds true even within each morphological type from Sa to Sc. LSBGs that have larger central stellar ve-locity dispersions or larger physical sizes tend to have a higher chance of harboring an AGN. For three AGNs with broad emission lines, the black hole masses estimated from the emission lines are broadly consistent with the well known M-σ* relation established for normal galaxies and AGNs.  相似文献   

20.
We find a significant anticorrelation between the hard X-ray photon index Γ and the Eddington ratio   L bol/ L Edd  for a sample of low-ionization nuclear emission-line regions and local Seyfert galaxies, compiled from literature with Chandra or XMM–Newton observations. This result is in contrast with the positive correlation found in luminous active galactic nuclei (AGN), while it is similar to that of X-ray binaries (XRBs) in the low/hard state. Our result is qualitatively consistent with the spectra produced from advection-dominated accretion flows (ADAFs). It implies that the X-ray emission of low-luminosity active galactic nuclei (LLAGN) may originate from the Comptonization process in ADAF, and the accretion process in LLAGN may be similar to that of XRBs in the low/hard state, which is different from that in luminous AGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号