首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local Tsunami Warning in the Pacific Coastal United States   总被引:2,自引:1,他引:1  
Coastal areas are warned of a tsunami by natural phenomena and man-made warning systems. Earthquake shaking and/or unusual water conditions, such as rapid changes in water level, are natural phenomena that warn coastal areas of a local tsunami that will arrive in minutes. Unusual water conditions are the natural warning for a distant tsunami. Man-made warning systems include sirens, telephones, weather radios, and the Emergency Alert System. Man-made warning systems are normally used for distant tsunamis, but can be used to reinforce the natural phenomena if the systems can survive earthquake shaking. The tsunami warning bulletins provided by the West Coast/Alaska and Pacific Tsunami Warning Centers and the flow of tsunami warning from warning centers to the locals are critical steps in the warning process. Public knowledge of natural phenomena coupled with robust, redundant, and widespread man-made warning systems will ensure that all residents and tourists in the inundation zone are warned in an effective and timely manner.  相似文献   

2.
Data for tsunamigenic earthquakes and observed tsunami run-up are used to estimate tsunami-risk for the coasts of Peru and northern Chile for zones bounded by 5–35° S latitude. Tsunamigenic earthquake estimates yield magnitudes of 8.52, 8.64, and 8.73 for recurrence periods of 50, 100, and 200 years, respectively. Based on three different empirical relations between earthquake magnitudes and tsunamis, we estimate expected tsunami wave heights for various return periods. The average heights were 11.2 m (50 years), 13.7 m (100 years), and 15.9 m (200 years), while the maximum height values (obtained by Iidas method) were: 13.9, 17.3, and 20.4 m, respectively. Both the averaged and maximum seismological estimates of tsunami wave heights for this region are significantly smaller than the actually observed tsunami run-up of 24–28 m, for the major events of 1586, 1724, 1746, 1835, and 1877. Based directly on tsunami run-up data, we estimate tsunami wave heights of 13 m for a 50-year return period and 25 m for a 100-year return period. According to the seismic gap theory, we can expect that the next strong earthquake and tsunami will occur between 19 and 28° S in the vicinity of northern Chile.  相似文献   

3.
During a tsunami emergency numerous local authorities responsible for the security oflocal persons and businesses which function in the coastal zone are required to makecritical decisions within a very short time frame. It is known that the consequencesof the situation will depend on the quality and quantity of decisions which they makeor allow to occur at the critical time. Based on this concept, the Local System of Tsunami Alert (SLAT; Spanish) was developed. This is a computational tool designed for the automatic implementation of integral management for an emergency of this type.The System is able to immediately evaluate possible risks and determine thetype of alert represented (Red, Yellow, Green, Blue, and Celeste) if relevantdata such as coordinates of the epicenter, magnitude, date, and origin of theearthquake (>6.5° on the Richter scale) threatening the Pacific areknown. Other relevant data include location of the coastal or marine epicentreand the superficial hypocenter. The relevant data may now be obtained fromthe internet from international seismological services, and fed into the programto give the most probable time for arrival of the first wave train at a given pointof interest, whether this be a port, bathing area, generating plant, or coastal city.The program also gives the time required for the first wave train to arrive at agiven coast, and displays a menu of previously planned actions to be taken accordingto the type of alert. It also permits dissemination of a bulletin with critical data and action plans by fax or e-mail to scattered users as well as for storage on the computer disc. The system is designed in a way that the user always confirms with authorities that anevent has in fact been generated. On a local scale, the user is required to prepare an operative emergency plan of action to be followed by his company, community, or municipality, to be followed for each type of alert.The System permits carrying out test exercises with the users, as well as simulationof past events. Knowledge concerning past events permits understanding correctdesign of emergency action plans for mitigation of potential present and future events.This software is specifically designed for the Pacific Coast of South America, and isprepared in Spanish, with the intention of improving responses of inhabitants of coastalareas to the potential threat from tsunamis.  相似文献   

4.
The first 7 years of the National Tsunami Hazard Mitigation Program (NTHMP) have had a significant positive impact on operations of the Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC). As a result of its seismic project, the amount and quality of real-time seismic data flowing into PTWC has increased dramatically, enabling more rapid, accurate, and detailed analyses of seismic events with tsunamigenic potential. Its tsunameter project is now providing real-time tsunameter data from seven strategic locations in the deep ocean to more accurately measure tsunami waves as they propagate from likely source regions toward shorelines at risk. These data have already been used operationally to help evaluate potential tsunami threats. A new type of tsunami run-up gauge has been deployed in Hawaii to more rapidly assess local tsunamis. Lastly, numerical modeling of tsunamis done with support from the NTHMP is beginning to provide tools for real-time tsunami forecasting that should reduce the incidence of unnecessary warnings and provide more accurate forecasts for destructive tsunamis.  相似文献   

5.
A few years ago the Canadian Hydrographic Service initiated a major upgrade toall tide gauges and tsunami stations on the coast of British Columbia (B.C.). Thisprogram was undertaken to address shortcomings of the earlier digital systems andwas driven by concerns about emergency response continuity in the year 2000. By1999, thirteen tide gauge stations had been installed and were operational. Three ofthese stations (Tofino, Winter Harbour, and Langara) were selected for use as tsunamiwarning stations. Several years of continuous, high quality data have now been collectedat these stations and used for analysis of long waves in the tsunami frequency band.Careful examination of these data revealed two weak tsunamis recorded by severalB.C. stations: a distant tsunami of June 23, 2001 generated by the Peru Earthquake(Mw = 8.4), and a local tsunami of October 12, 2001 induced by the Queen Charlotte Earthquake (Mw = 6.3$). Spectral characteristics of these two tsunamis are compared with the spectral characteristics of long waves generated by a strong storm (October, 2000) and of ordinary background oscillations. The topographic admittance functions (frequency responses) constructed for all stations showed that most of them (in particular, Winter Harbour, Tofino, Bamfield, Port Hardy, and Victoria) have strong resonance at periods from 2.5 to 20 min, indicating that these locations are vulnerable to relatively high-frequency tsunamis. The Winter Harbour station also has two strong resonant peaks with periods of 30 and 47 min and with amplification factors of about 7. The estimated source functions show very clear differences between long waves associated with the seismic source (typical periods 10–30 min) and those generated by a storm, which typically have shorter periods and strong energy pumping from high-frequencies due to non-linear interaction of wind waves.  相似文献   

6.
Real-Time Tsunami Forecasting: Challenges and Solutions   总被引:8,自引:0,他引:8  
A new method for real-time tsunami forecasting will provide NOAAs Tsunami Warning Centers with forecast guidance tools during an actual tsunami event. PMEL has developed the methodology of combining real-time data from tsunameters with numerical model estimates to provide site- and event-specific forecasts for tsunamis in real time. An overview of the technique and testing of this methodology is presented.  相似文献   

7.
In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years.  相似文献   

8.
This work describes the characteristics of a tsunami with an initial negative wave in the Pacific Ocean. These tsunamis fall into two classes; one class is produced by strong earthquakes and the other by earthquakes of moderate size. The relationship between the run-up probability occurrence is determined for both classes of tsunami and the mechanisms by which the tsunamis are generated is considered with reference to the keyboard model of tsunamigenic earthquakes. Tsunamis in the Arica region of northern Chile were analysed in more detail and these analyses suggest that a catastrophic tsunami is likely to occur in the Arica region in the next 10–20 years.  相似文献   

9.
Since 1964, the Geophysical Laboratory in Tahiti has been charged with the responsibility of issuing tsunami warnings. But this research laboratory is also designed to conduct other missions. One of them is to study an oversee seismicity and volcanism in the South Central Pacific. For this activity the Geophysical Laboratory, which is also the French Polynesia Tsunami Warning Center (Centre Polynésien de Prévention des Tsunamis — CPPT), processes the data recorded by the Polynesian Seismic Network which includes 21 short-period stations, 4 broad-band three-component long period stations, and 2 tide gauge stations. These stations are, for the most, telemetered to CPPT in Tahiti which is equipped wilh data processing capabilities.At CPPT, Tsunami Warning is based on the measurement of the Seismic Moment through the mantle magnitudeM m and the proportionality of observed tsunami height to this seismic moment.The new mantle magnitude scale,M m, uses the measurement of the mantle of Rayleigh and Love wave energy in the 50–300 s period range and is directly related to the seismic moment throughM m = logM o – 20. Knowledge of the seismic moment allows an estimation of a range of high seas amplitudes for the expectable tsunami.The relation that estimates the tsunami height according to the seismic moment is based on the normal mode tsunami theory but also fits a dataset of 17 tsunamis recorded at Papeete (PPT) since 1958. This procedure is fully automatic: a computer detects, locates and estimates the seismic moment through theM m magnitude and, in terms of moment, gives an amplitude window for the expected tsunami. These-several operations are executed in real time. In addition, the operator can use historical references and, if necessary, acoustic T waves.This automatic procedure, which has been operating at the CPPT since 1986, is certainly transposable and applicable to other tsunami warning centers that issue warnings for earthquakes detected more than 1000 km away, and has significant potential in the regional field.  相似文献   

10.
A survey of over 300 residents and visitors (non-residents) perceptions of tsunami hazards was carried out along the west coast of Washington State during August and September 2001. The study quantified respondents preparedness to deal with tsunami hazards. Despite success in disseminating hazard information, levels of preparedness were recorded at low to moderate levels. This finding is discussed in regard to the way in which people interpret hazard information and its implications for the process of adjustment adoption or preparedness. These data are also used to define strategies for enhancing preparedness. Strategies involve maintaining and enhancing hazard knowledge and risk perception, promoting the development of preparatory intentions, and facilitating the conversion of these intentions into sustained preparedness. A second phase of work began in February 2003, consisting of a series of focus groups which examined beliefs regarding preparedness and warnings, and a school survey. Preliminary findings of this work are presented.  相似文献   

11.
Distribution Functions of Tsunami Wave Heights   总被引:1,自引:1,他引:1  
The problem of describing the distribution functions of tsunami wave heights is discussed. Data on runup heights obtained in field surveys of several tsunamis for the last decade are used to calculate the empirical distribution functions. It is shown that the log-normal distribution describes the observed data well. This means that the irregular topography and coastline are major factors which influence the height distribution. The power distribution related with the geometric decay of the propagated wave is a good approximation for one event (Sulawesi, January 1, 1996) only. Results of a numerical simulation of the tsunami event in the Japan (East) Sea on July 12, 1993 are presented. It is shown that the computed wave height distribution, obtained by using the runup correction in the framework of nonlinear shallow-water theory, is in good agreement with the observed height distribution. Simulations are used to study the transformation of the distribution function on different distances from the source.  相似文献   

12.
The “PTVAM” tsunami vulnerability assessment model [Papathoma and Dominey-Howes: 2003, Nat. Hazards Earth Syst. Sci. 3, 733–744; Papathoma et al.: 2003, Nat. Hazards Earth Syst. Sci. 3, 377–389], like all models, requires validation. We use the results from post-tsunami surveys in the Maldives following the December 26, 2004 Indian Ocean tsunami to ‘evaluate’ the appropriateness of the PTVAM attributes to understanding spatial and temporal vulnerability to tsunami damage and loss. We find that some of the PTVAM attributes are significantly important and others moderately important to understanding and assessing vulnerability. Some attributes require further investigation. Based upon the ground-truth data, we make several modifications to the model framework and propose a revised version of the PTVAM (PTVAM 2).  相似文献   

13.
Estimating tsunami potential is anessential part of mitigating tsunami disasters. Weproposed a new method to estimate the far-fieldtsunami potential by assuming faultmodels on the Pacific Rim. We find thata tsunami that generates in the areas wherethere is no tsunami in the history can damagethe Japanese coast. This shows that it isimportant to estimate tsunami potential byassuming fault models other than the pastearthquake data.Another important activity to mitigate tsunamidisasters is to provide appropriatewarnings to coastal communities when dangerfrom a tsunami is imminent. We applied anew inversion method using wavelet transformto a part of the real-time tsunami forecastsystem for the Pacific. Because this inversionmethod does not require fault location, it ispossible to analyze a tsunami in real timewithout all seismic information. In order tocheck the usability of the system, anumerical simulation was executed assuming anearthquake at sea off Taiwan. The correlationcoefficient for the estimated initialwaveform to the assumed one was calculatedto be 0.78. It takes 90 min to capturetime-series waveform data from tsunamigauges and 5 sec to estimate the 2-D initialwaveform using the inversion method. After that,it takes 2 minutes to forecast thetsunami heights at the Japanese coast. Since thesum of these times is less than the 105minutes transit time of the tsunami fromTaiwan to Japan, it is possible to give a warningto the residents before the tsunami attacksthe Japanese coast. Comparing the tsunamiheights forecasted by this system with thosecalculated by the fault model, the averageerror was 0.39 m. The average error ofthe arrival time was 0.007 min.  相似文献   

14.
The exhaustive review of a long number of historical documents, books, reports,scientific and press reports, instrumental recordings, previous catalogues andpersonal field observations, concluded with the production of a completely newtsunami catalogue for the Corinth Gulf, Central Greece, which is arranged in theformat adopted by the GITEC group for the new European Tsunami Catalogue.The catalogue is presented in three sections: the Quick-Look Table, the Quick-LookAccounts File and the References File. An Appendix explains why some particularsea disturbances were not included in the new catalogue although they were consideredas tsunami events by previous researchers. Past history clearly shows that most tsunamis in the Corinth Gulf are produced by strong (Ms 5.5) offshore and near shore earthquakes. However, seismic or aseismic sliding of coastal and submarine sediments is a significant factor in tsunamigenesis. Calculations based on the random model indicate that the probability for at least one tsunami occurrence of intensity TI 2 TI 3 and TI 4 within 50 years equals 0.851, 0.747 and 0.606, respectively. From the intensity–frequency relationship the mean return period of tsunami intensity TI 2, TI 3 and TI 4 equals to 16, 40 and 103 years. The tsunami geographicaldistribution, however, is non-random with a clear trend for the tsunamigenesis todecrease drastically from west to east within the Corinth Gulf. In fact, the probabilityfor a strong earthquake to cause a tsunami of TI 3 in the Corinth Gulf consideredas an entity is 0.35, while in the western part of the Gulf it goes up to 0.55. Therefore, the rapid and accurate determination of the earthquake focal parameters is of great importance in an algorithm of a real-time tsunami warning system in the Corinth Gulf.  相似文献   

15.
智利铜产业竞争力分析   总被引:1,自引:0,他引:1  
马骋 《地质与勘探》2010,46(6):1133-1137
本文采用产业竞争力钻石模型对智利铜产业竞争力关键因素及其互动关系进行整体分析。认为应参照"智利模式"来提升我国铜产业竞争力,继续加大整合产业力度,在市场失灵情形下,政府适度干预和宏观调控是对矿业企业内部-外部运行环境的协调过程,这一过程形成宏观调控与市场调节功能相结合的"二元产业组织结构";针对我国铜业资源短缺的现状,应及时选择国内铜矿资源后备基地及资源接替区,给予相应的政策支持;同时发展和建设中国成熟的多层次矿业资本市场风险控制体系。  相似文献   

16.
Tsunami education activities, materials, and programs are recognized by the National Tsunami Hazard Mitigation Program (NTHMP) as the essential tool for near-source tsunami mitigation. Prior to the NTHMP, there were no state tsunami education programs outside of Hawaii and few earthquake education materials included tsunami hazards. In the first year of the NTHMP, a Strategic Plan was developed providing the framework for mitigation projects in the program. The Strategic Plan identifies education as the first of five mitigation strategic planning areas and targets a number of user groups, including schools, businesses, tourists, seasonal workers, planners, government officials, and the general public. In the 6 years of the NTHMP tsunami education programs have been developed in all five Pacific States and include print, electronic and video/film products, curriculum, signage, fairs and workshops, and public service announcements. Multi-state education projects supported by the NTHMP include TsuInfo, a bi-monthly newsletter, and Surviving a Tsunami, a booklet illustrating lessons from the 1960 Chilean tsunami. An additional education component is provided by the Public Affairs Working Group (PAWG) that promotes media coverage of tsunamis and the NTHMP. Assessment surveys conducted in Oregon, Washington, and Northern California show an increase in tsunami awareness and recognition of tsunami hazards among the general population since the NTHMP inception.  相似文献   

17.
The paper is a report of the field campaign undertaken by an international team (Italian, French and Indonesian) a few weeks after the occurrence of a tsunami invading the south-eastern coast of Java (Indonesia) and it complements the results of a concurrent field survey by Asian and USA researchers. The tsunamigenic earthquake occurred on 3 of June 1994 in the Indian Ocean about 200 km south of Java. The tsunami caused severe damage and claimed many victims in some coastal villages. The main purpose of the survey was to measure the inundation and the runup values as well as to ascertain the possible morphological changes caused by the wave attacks. Attention was particularly focussed on the most affected districts, that is Lumajang, Jember and Banyuwangi in Java, although also the districts of Negera, Tebanan and Denpasar in Bali were examined. The most severe damage was observed in the Banyuwangi district, where the villages of Rajekwesi, Pancer and Lampon were almost completely levelled by the violent waves. Most places were hit by three significant waves with documented wave height often exceeding 5 m. The maximum runup value (9.50 m) was measured at Rajekwesi, where also the most impressive erosion phenomena could be found. In contrast, only in one place of the neighbouring island of Bali was there a slight tsunami, the rest of the island being practically unaffected.  相似文献   

18.
The tsunami run-up, inundation and damage pattern observed along the coast of Tamilnadu (India) during the deadliest Indian Ocean tsunami of December 26, 2004 is documented in this paper. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries, bordering the Indian Ocean. Along the coast of Indian mainland, the damage was caused by the tsunami only. Largest tsunami run-up and inundation was observed along the coast of Nagapattinam district and was about 10–12 m and 3.0 km, respectively. The measured inundation data were strongly scattered in direct relationship to the morphology of the seashore and the tsunami run-up. Lowest tsunami run-up and inundation was measured along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts of Tamilnadu in the Palk Strait. The presence of shadow of Sri Lanka, the interferences of direct/receded waves with the reflected waves from Sri Lanka and Maldive Islands and variation in the width of continental shelf were the main cause of large variation in tsunami run-up along the coast of Tamilnadu.  相似文献   

19.
Sea level measurements along the southeastern Brazilian coast, between 20° S and 30° S, show the effect of the Sumatra Tsunami of December 26, 2004. Two records from stations, one located inside an estuary and other inside a bay, shows oscillations of about 0.20 m range; one additional record from a station facing the open sea shows up to 1.2 m range oscillations. These oscillations have around 45 min period, starting 20–22 h after the Sumatra earthquake in the Indian Ocean (00:59 UTC) and lasting for 2 days. A computer modelling of the event reproduces the time of arrival of long shallow-water tsunami waves at the southeastern Brazilian coast but with slight longer period and amplitudes smaller than observed at the coast, probably due to its coarse resolution (1/4 of a degree). The high amplitudes observed at the coast suggest a mechanism of amplification of these waves over the southeastern Brazilian shelf.  相似文献   

20.
试用地球系统科学观解读2004年印度洋地震海啸   总被引:3,自引:0,他引:3  
吕林素 《地球学报》2007,28(2):209-217
2004年印度洋地震海啸是本世纪初全球发生的最为惨重的自然灾害.这次地震海啸涉及地球的岩石圈、水圈、大气圈和生物圈,甚至还有地外星球和月球的作用,造成能量与物质之间的相互转化与传递,说明地球是一个完整的统一整体.因此,对地震海啸等自然灾害必须采用地球系统科学观进行分析和研究,找出彼此之间的相互关系、形成机制和演化规律,并用信息化、全球化和可持续发展的地球科学观来研究和防御地震海啸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号